

Art.3.2

CE

Radio

Shenzhen POCE Technology Co., Ltd.

H Building, Hongfa Science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China

CERTIFICATE OF CONFORMITY

Certificate No.			POCE200413039MCW				
Applicant		:	Allterco Robotics	Allterco Robotics			
Address		:	103 Cherni Vrah Blvd, S	ofia 1407, Bulgaria			
Manufactur	er	;	Allterco Robotics				
Address		:	103 Cherni Vrah Blvd, Sofia 1407, Bulgaria				
Product Na	me	:	LED Lamps				
Model Nam	е	:	Shelly Vintage A60, Shelly Vintage ST64				
Trade Name	e	:	N/A				
Essential Requirement			Applied Specification /Standards	Documentary Evidence			
Art.3.1(a) Safety		EN	V 62560: 2012+A1: 2015	Test Report: POCE200413057ERS			
Art.3.1(b) EMC			SI EN 301 489-1 V2.2.3 SI EN 301 489-17 V3.2.2	Test Report: POCE200413040GRW			
Art.3.1(a) Health		EN	I 62311: 2008 Test Report: POCE200413041MR				

ETSI EN 300 328 V2.2.2

The certificate is issued in accordance with the Radio Equipment

Directive 2014/53/EU of 16 April 2014.

Chief Executive / Bil Yuan Date: Apr. 2102020

Test Report: POCE200413042GRW

This certificate of conformity is based on a single evaluation of the submitted sample(s) of the above mentioned product. It does not imply an assessment of the whole production and other relevant directives have to be observed.

Result

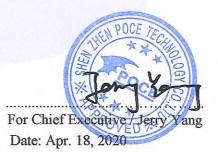
Conform

Conform

Conform

Conform

Web: http://www.poce-cert.com Tel: +86-755-29113252 E-mail: service@poce-cert.com


H Building, Hongfa Science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China

CERTIFICATE OF CONFORMITY

Certificate No.		POCE200418008PCR
Applicant		Allterco Robotics
Address	8	103 Cherni Vrah Blvd, Sofia 1407, Bulgaria
Manufacturer	•	Allterco Robotics
Address		103 Cherni Vrah Blvd, Sofia 1407, Bulgaria
Product		LED Lamps
Trade Name	:	N/A
Model(s)	9 0	Shelly Vintage A60, Shelly Vintage ST64
Test Report No.	:	POCE200418006VRR
Test Standards	0 8	IEC 62321-3-1:2013; IEC 62321-4:2013; IEC 62321-5:2013; IEC 62321-6:2015; IEC 62321-7-1:2015; IEC 62321-8:2017

The EUT described above has been tested by us with the listed standards and found in compliance with the council **RoHS Directive(EU) 2015/863 amending Annex II to Directive 2011/65/EU.** It is possible to use **CE** marking to demonstrate the compliance with this **RoHS** Directive.

This certificate of conformity is based on a single evaluation of the submitted sample(s) of the above mentioned product. It does not imply an assessment of the whole production and other relevant directives have to be observed.

Web: http://www.poce-cert.com Tel: +86-755-29113252 E-mail: service@poce-cert.com

V1.0	Shenzhen POCE Technology Co., Ltd. Report NO.: POCE200413040GRW
2	NO TEST DEDODT
	MC TEST REPORT
	ETSI EN 301 489-1 V2.2.3 (2019-11)
Dr	raft ETSI EN 301 489-17 V3.2.2 (2019-12)
Report Reference No.	: POCE200413040GRW
Applicant's Name	: Allterco Robotics
Address of Applicant	: 103 Cherni Vrah Blvd, Sofia 1407, Bulgaria
Test Firm	: Shenzhen POCE Technology Co., Ltd.
Address of Test Firm	: H Building, Hongfa Science and Technology Park, Tangtou,
	Shiyan, Bao'An District, Shenzhen, China
Test Specification Standard	: ETSI EN 301 489-1 V2.2.3 (2019-11)
	Draft ETSI EN 301 489-17 V3.2.2 (2019-12)
Product Name	: LED Lamps
Model/Type Reference	: Shelly Vintage A60
Listed Models	: Shelly Vintage ST64
Date of Receipt	: Dec. 27, 2019
Date of Test	: Dec. 27, 2019 - Apr. 20, 2020
Data of Issue	: Apr. 21, 2020
Result	: PASS
	THEN POCE TECH
Compiled by:	Supervised by:

The

Amy Zhu/ File administrators

Supervised by:

Stone Yin/ Technique principal

Sofone for

Shenzhen POCE Technology Co., Ltd.All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen POCE Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen POCE Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Revision History Of Report

	Version	Description	REPORT No.	Issue Date
C	V1.0	Original	POCE200413040GRW	Apr. 21, 2020
	OF PU	POUL	POCE	EP
C	01 00	CE OCE	PO PO	POCE
	CE	PU-	POUL DOCK	DE
5		DOCE	CE P	pour

NOTE1:

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EU Directives.

NOTE2:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

POCE CE OCE

Report NO.: POCE200413040GRW

CONTENTS

		CONTENTS			
TE	ST SUMMARY	ROCE			
1.1	Test Standards	E	e pos	POUL	
1.2	Summary of Test Result	POOL POC		E SOCE	
GE		POCE			
		OCE PC			
2.1					
2.2	TEST Environmental Col	nditions	P	00-	
2.3	Description of Device (E	UT)			
2.4	Description of Test Mode	es	PO	POUL	DOCE
2.5	Equipmente Llood During	g The Test			
-	Equipments Used During	g The Test	40	POU	200
2.6	Test Lab Information	POCE	TOCE	-CE	
2.7	Statement Of The Measu	rement Uncertainty		2005	
OTE		ULTS			
3.1	EMC EMISSION TEST	2000		Ge	
3.1		n (AC Mains)			
3.1		000			
3.1	.3 Harmonic Current E	missions		004	
3.1	.4 Voltage Fluctuations	and Flicker		2	0-
3.2	EMC IMMUNITY TEST		POUL	-DOCE	CE
3.2	.1 Immunity Performan	nce criteria		<u></u>	200
3.2		rge			
3.2		Field			
3.2		nmon Mode			
3.2					
3.2					
3.2	7 Voltago Dine and Int	erruptions	200	-00	E
J.2	voltage bips and int		~~	600	<
TE		POU pC			at I
00	31 3ETUF FRUIU3	ACE AE	PC	00	U
PH		POCE			
	UIUS UF THE EUT	· · · · · · · · · · · · · · · · · · ·			(

V1.0

Page 3 of 44

POCE

1. TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

ETSI EN 301 489-1 V2.2.3 (2019-11) —ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements; Harmonised Standard for ElectroMagnetic Compatibility

Draft ETSI EN 301 489-17 V3.2.2 (2019-12) —ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 17: Specific conditions for Broadband Data Transmission Systems; Harmonised Standard for ElectroMagnetic Compatibility)

1.2 Summary of Test Result

ETSI EN 301 489-1/ Requirements

POUL POUL	Emission	P
Conducted Emission(AC Mains)	ETSI EN301 489-1 V2.2.3 Clause 7.1	PASS
Radiated Emission	ETSI EN301 489-1 V2.2.3 Clause 7.1	PASS
Conducted Emission (Telecommunication Ports)	ETSI EN301 489-1 V2.2.3 Clause 7.1	N/A
Harmonic Current Emissions	ETSI EN301 489-1 V2.2.3 Clause 7.1	N/A
Voltage Fluctuations and Flicker	ETSI EN301 489-1 V2.2.3 Clause 7.1	PASS
E POUL POUL POUL	Immunity	poo.
Electrostatic Discharge	ETSI EN301 489-1 V2.2.3 Clause 7.2	PASS
RF Electromagnetic Field	ETSI EN301 489-1 V2.2.3 Clause 7.2	PASS
Fast Transients Common Mode	ETSI EN301 489-1 V2.2.3 Clause 7.2	PASS
Surges	ETSI EN301 489-1 V2.2.3 Clause 7.2	PASS
RF Common Mode 0,15 MHz to 80 MHz	ETSI EN301 489-1 V2.2.3 Clause 7.2	PASS
Transients and Surges	ETSI EN301 489-1 V2.2.3 Clause 7.2	N/A
Voltage Dips and Interruptions	ETSI EN301 489-1 V2.2.3 Clause 7.2	PASS

Note1: N/A means this test item is not applicable for this device. Note2: This device also belong to information technology equipment, and most of EN55032 and EN55035's test items are same with ETSI EN301 489's.so most of EN55032 and EN55035's tests were performed together with EN301 489's test.

2. GENERAL INFORMATION

2.1 Client Information

Applicant

V1.0

PO(**Allterco Robotics**

Address

103 Cherni Vrah Blvd, Sofia 1407, Bulgaria

Manufacturer

Allterco Robotics

Address

103 Cherni Vrah Blvd, Sofia 1407, Bulgaria

2.2 TEST Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

<u> </u>	Normal Temperature:	15°C - 35°C
POCE	Relative Humidity	35%-55 %
POCE	Air Pressure	101KPa
Description	n of Device (EUT)	POCE POCE

2.3 Description of Device (EUT)

Equipment	LED Lamps			
Trade Mark	N/A			
Model Name	Shelly Vintage A60			
Series model	Shelly Vintage ST64			
Model Difference	All models have the same functionality, software and electronics, only the color, front frame shape and model names may differ. Test sample model: Shelly Vintage A60			
Power Source	AC 230V/ 50Hz			
2.4G WIFI				
Supported type:	IEEE 802.11b/802.11g/802.11n(H20)			
Operation frequency	IEEE 802.11b/g/n20: 2412-2472MHz			
Modulation Type	IEEE 802.11b/g/n(HT20): CCK/DSSS			
Number of Channels	IEEE 802.11b/802.11g/802.11n(HT20): 13			
Channels Separation	5MHz			
Antenna type	PCB Antenna			
Antenna gain	0 dBi			
Note: For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.				

Shenzhen POCE Technology Co., Ltd. Report NO.: POCE200413040GRW

2.4 Description of Test Modes

The EUT has been tested under typical operating condition. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Ē			Test Moo	de	
EM	POUL	PO	Mode 1: Transmitting	DOE DE	PUL
EM	s poce	P	Mode 1: Transmitting	Mode 2: Standby	POUL

NOTE: For DC (battery-powered equipment, no adapter) equipment, we tested the conducted Emission using HP notebook, notebook model:HP-CQ45, notebook adapter model: 0713A1990 INPUT:100-240V~1.5A 50-60Hz OUTPUT:19V==-4.74A

2.5 Equipments Used During The Test

nducted Emission	-CE		PUC	2064	ACE
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due
Test Receiver	Rohde & Schwarz	ESCI TEST RECEIVER	ID:1164.6607 K03-102109- MH	Dec. 11, 2019	1 Year
OCEL.I.S.N	Rohde & Schwarz	ESH3-Z5.831 .5518.52	9561-G071	Dec. 11, 2019	1 Year
50ΩCoaxial Switch	Anritsu	MP59B	M20531	N/A	N/A
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	Dec. 11, 2019	1 Year
Cable	SCHWARZ BECK	N/A	N/A	Dec. 11, 2019	1 Year
	Equipment Test Receiver L.I.S.N 50ΩCoaxial Switch Pulse Limiter	EquipmentManufacturerTest ReceiverRohde & SchwarzL.I.S.NRohde & Schwarz50ΩCoaxial SwitchAnritsuPulse LimiterSCHWARZ BECK	EquipmentManufacturerModel No.Test ReceiverRohde & SchwarzESCI TEST RECEIVERL.I.S.NRohde & SchwarzESH3-Z5.831 .5518.5250ΩCoaxial SwitchAnritsuMP59BPulse LimiterSCHWARZ BECKVTSD 9561-F Pulse limiter 10dB Ateennator	EquipmentManufacturerModel No.Serial No.Test ReceiverRohde & SchwarzESCI TEST RECEIVERID:1164.6607 K03-102109- MHL.I.S.NRohde & SchwarzESH3-Z5.831 .5518.529561-G07150ΩCoaxial SwitchAnritsuMP59BM20531Pulse LimiterSCHWARZ BECKVTSD 9561-F Pulse limiter 10dB Ateennator561-G071	EquipmentManufacturerModel No.Serial No.Last Cal.Test ReceiverRohde & SchwarzESCI TEST RECEIVERID:1164.6607 K03-102109- MHDec. 11, 2019 Dec. 11, 2019L.I.S.NRohde & SchwarzESH3-Z5.831 .5518.529561-G071Dec. 11, 201950ΩCoaxial SwitchAnritsuMP59BM20531N/APulse LimiterSCHWARZ BECKVTSD 9561-F Pulse limiter 10dB Ateennator561-G071Dec. 11, 2019

Radiated Emission

Rac	diated Emission	<u> </u>		it is		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Test Receiver	Rohde & Schwarz	ESCI TEST RECEIVER	ID:1164.6607 K03-102109- MH	Dec. 11, 2019	1 Year
2	Bilog Antenna	Sunol Sciences	Model JB6 Antenna	A090414	Dec. 11, 2019	1 Year
3	HF Antenna	Sunol Sciences	Model DRH-118	A091114	Dec. 11, 2019	1 Year
4	50ΩCoaxial Switch	Anritsu	MP59B	M20531	N/A	1 Year
5	control	Positioning Controller	Model MF-7802	MF78020836 2	Dec. 11, 2019	1 Year
6	Cable(LF)	SCHWARZ BECK	N/A	N/A	Dec. 11, 2019	1 Year
7	Cable(HF)	SCHWARZ BECK	N/A	N/A	Dec. 11, 2019	1 Year
8	Amplifier (LF)	SCHWARZ BECK	BBV9743	9743-151	Dec. 11, 2019	1 Year
9	Amplifier(HF)	SCHWARZ BECK	BBV9718	9718-282	Dec. 11, 2019	1 Year
10	Spectrum analyzer	Agilent	E4408B	56110	Dec. 11, 2019	1 Year

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

Page 6 of 44

Report NO.: POCE200413040GRW

Harmonic	Test /	Flicker	Test

Har	monic Test / Flicker 1	Test	POUL	POCE	POCE	OCE
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
GC	Equipment	Manufacturer	Model No.	Factory Number	Last Cal.	1 Year
20	Harmonic Current / Flicker Measurement	SCHAFFNER	AC 2000A	20812	Dec. 11, 2019	1 Year

Electrostatic Discharge

Item Equipment		Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	ESD Tester	PRIMA	61002AG	PR14042705	Dec.11, 2019	1 Year
2	Audio Analyzer	R&S	UPV	100419	Dec.11, 2019	1 Year

Electrical Fast Transients Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Burst Tester	HTEC	HEFT 51	144303	Dec. 11, 2019	1 Year
2	Coupling Clamp	HTEC	IP-4A	147147	Dec. 11, 2019	1 Year

Surges Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
-90	Surge Tester	Prima	ESD61002A G	PR14042705	Dec. 11, 2019	1 Year
Cor	nducted Immunity Te	est pou	POC	E DOC	E CO	E POL

Conducted	Immunity Test
oonuucieu	minumity rest

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due
1	Simulator	EMTEST	CWS500C	0900-12	Dec. 11, 2019	1 Year
2	CDN 00	EMTEST	CDN-M2	5100100100	Dec. 11, 2019	1 Year
3	CDN	EMTEST	CDN-M3	0900-11	Dec. 11, 2019	N/A
4	Injection Clamp	EMTEST	F-2031-23M M	368	Dec. 11, 2019	1 Year
5	Attenuator	EMTEST	ATT6	0010222A	Dec. 11, 2019	1 Year

Voltage Dips and Interruptions Test

1 Dips Tester HTEC HPFS 144304 Dec. 11, 2019 1 Year		ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
	X	1	Dips Tester	HTEC	HPFS	144304	Dec. 11, 2019	1 Year

V1.0

NI	Lieutionagnetic i le	IU C		DU	2005	-CK
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Signal Generator	HP DOG	8648A	3625U00573	Dec.11, 2019	1 Year
2	Amplifier	AR	500A100	17034	NCR	NCR
3	Amplifier	AR 00	100W/1000M	17028	NCR	NCR
4	Isotropic Field Monitor	AR	FM2000	16829	NCR	NCR
5 🕤	Isotropic Field Probe	AR	FP2000	16755	Dec.11, 2019	1 Year
6	Biconic Antenna	EMCO	3108	9507-2534	NCR	NCR
7	Log-periodic Antenna	AR	AT1080	16812	NCR	NCR
8	Audio Analyzer	R&S	UPV	100419	Dec.11, 2019	1 Year
CE	POCE	OCE POOL	POCE	POCE	POCE	POCE
2.6	Test Lab Informati	on				
CN	AS Registration Num	ber is L8229				

RF Electromagnetic Field

2.6 Test Lab Information

CNAS Registration Number is L8229

Shenzhen POCE Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Jan. 06, 2016.

VCCI Membership No.: 3941

The 3m Semi-anechoic chamber of Shenzhen POCE Technology Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-3941. Date of Registration: Oct. 22, 2018.

2.7 Statement Of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods - Part 4: Uncertainty in EMC Measurements" and is documented .guality system according to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for POCE laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	±2.50dB	(1)
Radiated Emission	1~12.75GHz	±3.20dB	(1)
Conducted Emission	0.15~30MHz	±2.64dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Harmonic Current Emission Voltage Fluctuations and Flicker The measurement uncertainty is evaluated as \pm 1.4 %. Flicker: The measurement uncertainty is evaluated as ± 1.2

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China F-mail service@poce http://www.poce-cert

Page 8 of 44

Electrostatic Discharge

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in ESD testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant ESD standards. The immunity test signal from the ESD system meet the required specifications in IEC 61000-4-2 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 1.22% and 2.36%.

RF Electromagnetic Field

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in RS testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant RS standards. The immunity test signal from the RS system meet the required specifications in IEC 61000-4-3 through the calibration for the uniform field strength and monitoring for the test level with the uncertainty evaluation report for the electrical filed strength as being 2.50 dB.

Fast Transients Common Mode

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in EFT/Burst testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant EFT/Burst standards. The immunity test signal from the EFT/Burst system meet the required specifications in IEC 61000-4-4 through the calibration report with the calibrated uncertainty for the waveform of voltage. Frequency and timing as being 1.33% and 2.50%.

Surges

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in Surge testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant Surge standards. The immunity test signal from the Surge system meet the required specifications in IEC 61000-4-5 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 1.63% and 2.76%.

RF Common Mode

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in CS testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant CS standards. The immunity test signal from the CS system meet the required specifications in IEC 61000-4-6 through the calibration for unmodulated signal and monitoring for the test level with the uncertainty evaluation report for the injected modulated signal level through CDN and EM Clamp/Direct Injection as being 2.46 dB and 2.85 dB.

Voltage Dips and Interruption

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in DIP testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant DIP standards. The immunity test signal from the DIP system meet the required specifications in IEC 61000-4-11 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 1.95% and 3.24%.

Transients and Surges

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in Transients and Surges testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant Surges standards. The immunity test signal from the Transients and Surges system meet the required specifications in ISO 7637-2 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 1.25% and 2.75%.

3. TEST CONDITIONS AND RESULTS

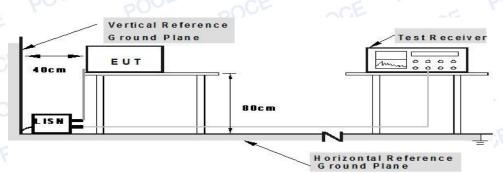
3.1 EMC EMISSION TEST

3.1.1 **Conducted Emission (AC Mains)**

LIMIT

V1.0

TEST CONDITION 1 EMC EMISSION TH 1.1 Conducted Emiss	EST		POCE POCE POCE	
	Class A	(dBuV)	Class	B (dBuV)
FREQUENCY (MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *
0.50 -5.0	73.00	60.00	56.00	46.00
5.0 -30.0	73.00	60.00	60.00	50.00

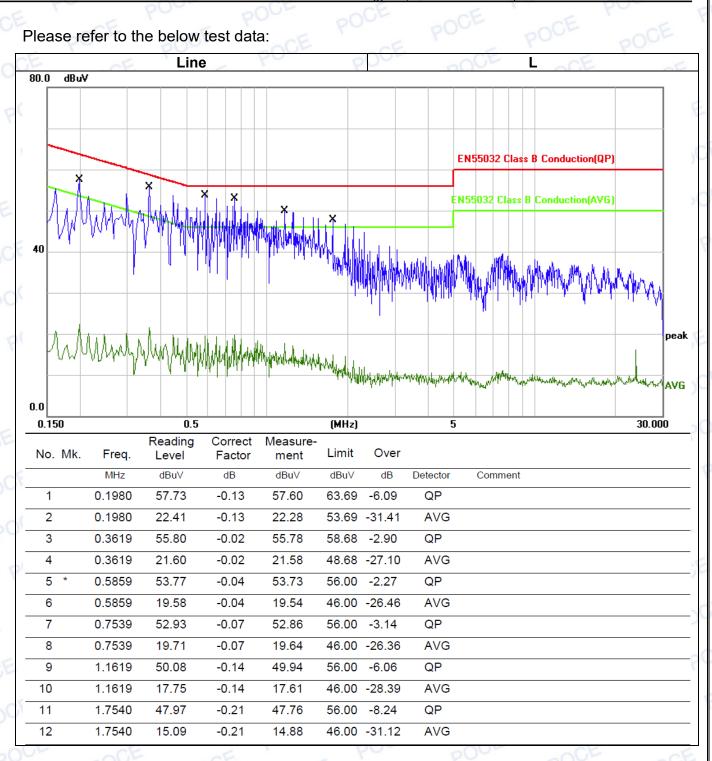

Note: (1)The tighter limit applies at the band edges.

(2)The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

TEST PROCEDURE

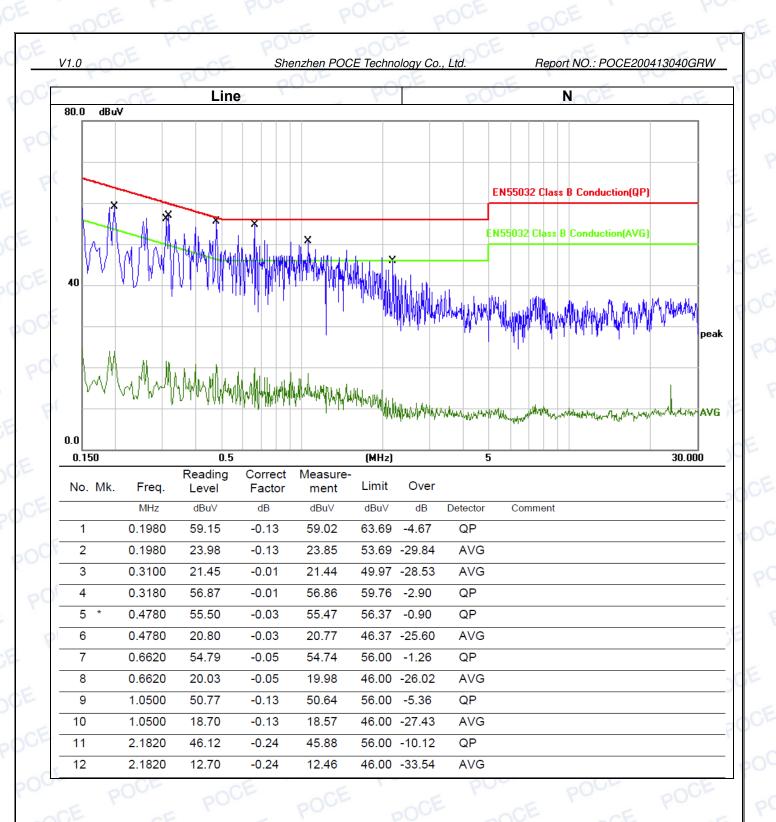
- a) The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and b) forth in the center forming a bundle 30 to 40 cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the C) cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d) LISN at least 80 cm from nearest part of EUT chassis.
- For the actual test configuration, please refer to the related Item -EUT Test Photos. e)

Block diagram of RS test setup



were connected to seco ort units v e hne SNe (AMN) are 80 cm from

PASS


TEST RESULTS

Report NO.: POCE200413040GRW

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

Page 11 of 44

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

Page 12 of 44

3.1.2 Radiated Emission

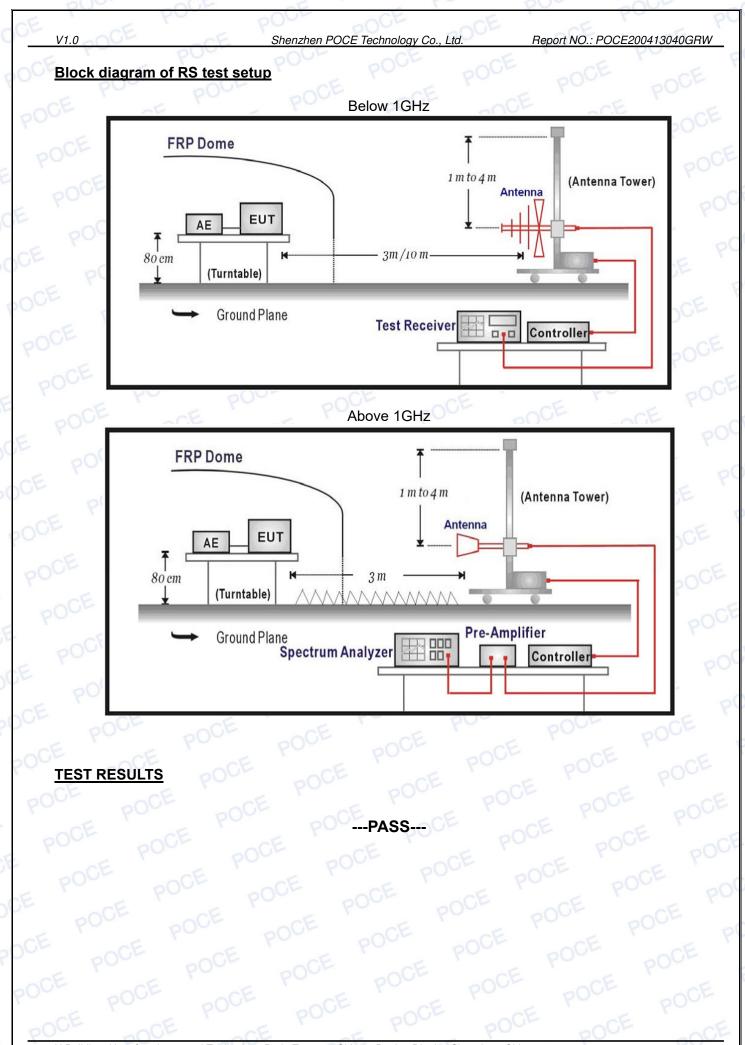
LIMIT

V1.0

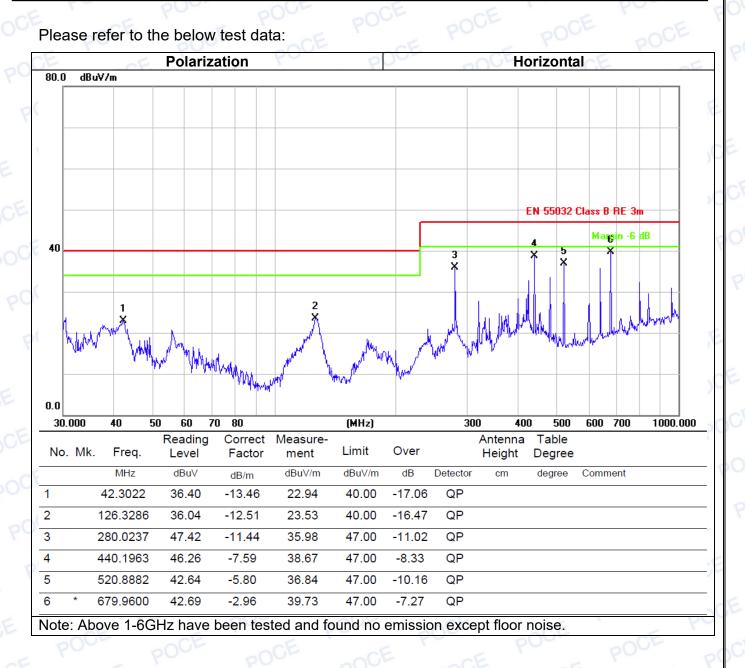
	LIMITS OF I	RADIATED EMISSION ME	ASURE	EMENT (Below '	1000MHz)	
	FREQUENCY (MHz)	Class B(at 10m)		Class	B (at 3m)	
	FREQUENCT (MILZ)	dBuV/m		dBuV/m		
3	30 – 230	30	POU	POCE	40	È
	230 – 1000	37	-0	E C	47	1
						-

Shenzhen POCE Technology Co., Ltd.

LIMITS OF RADIATED EMISSION MEASUREMENT(Above 1000MHz)


	FREQUENCY (MHz)	Class A (at 1	0m) dBuV/m	Class B (at 3	3m) dBuV/m
	FREQUENCT (MINZ)	Peak	Avg	Peak	Avg
8	1000-3000	76	56	70	50 00
1	3000-6000	80	60	74	54

Notes: (1)The limit for radiated test was performed according to as following: ETSI EN 301 489-1/EN 55022


(2)The tighter limit applies at the band edges.


TEST PROCEDURE

- a) The EUT was placed on the top of a rotating table 3 meters away from the receiver antenna and 0.8 meters above the ground at a 9X9X6 anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The height of the equipment shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak/Average detector mode re-measured.
- d) If the Peak Mode measured value compliance with and lower than Quasi Peak/Average Mode Limit, the EUT shall be deemed to meet QP/AV Limits and then no additional QP/AV Mode measurement performed.
- e) For the actual test configuration, please refer to the related Item -EUT Test Photos.

Report NO.: POCE200413040GRW

Page 16 of 44

3.1.3 Harmonic Current Emissions

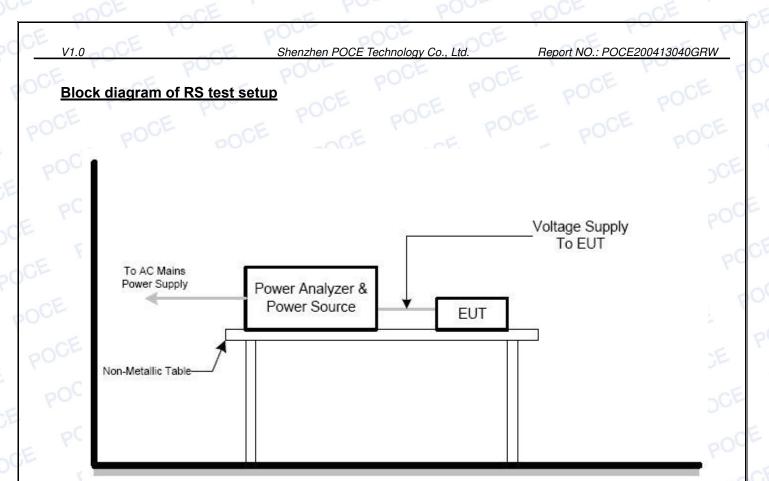
LIMITS

V1.0

	IEC 555-2						
		Table -	1		Table - II		
	Equipment	Harmonic	Max. Permissible	Equipment	Harmonic	Max. Permissible	
	Category	Order	Harmonic Current	Category	Order	Harmonic Current	
2		n	(in Ampers)		n	(in Ampers)	
1		Odd	Harmonics		Odd	Harmonics	
~		3	2.30		3	0.80	
9		5	1.14		5	0.60	
		7	0.77		7	0.45	
-	Non	9	0.40	TV	9	0.30	
	Portable	11	0.33	Receivers	11	0.17	
	Tools	13	0.21		13	0.12	
	or	15≤n≤39	0.15 · 15/n		15≤n≤39	0.10 · 15/n	
5	TV	Even	Even Harmonics		Even	Harmonics	
	Receivers	2	1.08		2	0.30	
		4	0.43		4	0.15	
		8	0.30				
		8≤n≤40	0.23 · 8/n		DC	0.05	
	OUK OK			1 C	VV		

1	EN 61000-3-2/IEC 61000-3-2					
	Equipment	Max. Permissible	Equipment	Harmonic	Max. Per	missible
C	Category	Harmonic Current	Category	Order	Harmonic	Current
		(in Ampers)		n	(in A)	(mA/w)
C				3	2.30	3.4
		Same as Limits		5	1.14	1.9
R	Class A	Specified in	Class D	7	0.77	1.0
		4-2.1, Table - I,		9	0.40	0.5
		but only odd		11	0.33	0.35
		harmonics required		13≤n≤39	see Table I	3.85/n
				only o	dd harmonics r	equired

TEST PROCEDURE


- a) The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.
- b) The classification of EUT is according to section 5 of EN 61000-3-2: 2000. The EUT is classified as follows:

Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.

Class B: Portable tools. Portable tools. Arc welding equipment which is not professional equipment. Class C: Lighting equipment.

Class D: Equipment having a specified power less than or equal to600 W of the following types: Personal computers and personal computer monitors and television receivers.

- c) The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.
- d) For the actual test configuration, please refer to the related item -EUT Test Photos.

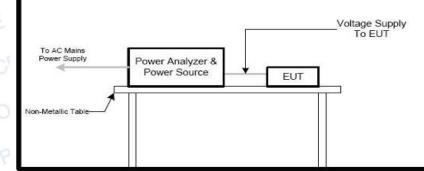
TEST RESULTS

Not applicable to this device, which output power is less than 75W.

Report NO.: POCE200413040GRW

3.1.4 Voltage Fluctuations and Flicker

LIMITS


V1.0

Tests	Li	mits	Descriptions
lesis	IEC555-3	IEC/EN 61000-3-3	Descriptions
Pst	≤ 1.0, Tp= 10 min.	≤ 1.0, Tp= 10 min.	Short Term Flicker Indicator
Plt	N/A	≤ 0.65, Tp=2 hr.	Long Term Flicker Indicator
dc	≤ 3 %	≤ 3.3%	Relative Steady-State ∨-Chang
dmax	$\leq 4\%$	$\leq 4\%$	Maximum Relative ∨-change
d (t)	N/A	\leq 3.3% for $>$ 500 ms	Relative V-change characteristic
PROCEDU	IRE	POUL	OCE CE

TEST PROCEDURE

- a) Fluctuation and Flickers Test: Tests was performed according to the Test Conditions Assessment of Voltage Fluctuations specified in Clause 5.0/6.0 of IEC555-3 and/or Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.
- b) All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.
- c) For the actual test configuration, please refer to the related Item –EUT Test Photos.

Block diagram of RS test setup

TEST RESULTS

---PASS----

PASS

Please reference to the following:

EN 61000-3-3:2013 - Voltage reduction is positive

Voltage Variations

Nominal Voltage: 230 Vrms Highest Half-cycle level: +0.04% Lowest Half-cycle level: +0.12%

> d(max): 0.00% Limit: 4% PASS t(max): 0.00seconds Limit: 500ms PASS

Steady State definition: >1000ms within +/- 0.2%Largest d(c) change down:0.00%Largest d(c) change up:+0.00%Largest d(c) change:0.00%Limit: 3.3%

3.2 EMC IMMUNITY TEST

3.2.1 Immunity Performance criteria

A. General Requirements (ETSI EN 301489-1):

The performance criteria criteria are used to take a decision on whether radio equipment passes or fails immunity tests.

For the purpose of the present document four categories of performance criteria apply:

- Performance criteria for continuous phenomena applied to transmitters and receivers
- Performance criteria for transient phenomena applied to transmitters and receivers
- Performance criteria for equipment which does not provide a continuous communication link
- Performance criteria for ancillary equipment tested on a stand alone basis

(1) Performance criteria for continuous phenomena applied to transmitters and receivers If no further details are given in the relevant part of ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment, the following general performance criteria for continuous phenomena shall apply.

During and after the test, the equipment shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the equipment is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

During the test the EUT shall not unintentionally transmit or change its actual operating state and stored data.

If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.

(2) Performance criteria for transient phenomena applied to transmitters and receivers If no further details are given in the relevant part of ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment, the following general performance criteria for transient phenomena shall apply.

For surges applied to symmetrically operated wired network ports intended to be connected directly to outdoor lines the following criteria applies:

- f) For products with only one symmetrical port intended for connection to outdoor lines, loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A SW reboot is not allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.
- g) For products with more than one symmetrical port intended for connection to outdoor lines, loss of function on the port under test is allowed, provided the function is self-recoverable. A SW reboot is not allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

For all other ports the following applies:

- h) After the test, the equipment shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the equipment is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.
- i) During the EMC exposure to an electromagnetic phenomenon, a degradation of performance is, however, allowed. No change of the actual mode of operation (e.g. unintended transmission) or stored data is allowed.

V1.0

Shenzhen POCE Technology Co., Ltd.

Report NO.: POCE200413040GRW

If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.

(3) Performance criteria for equipment which does not provide a continuous communication link For radio equipment which does not provide a continuous communication link, the performance criteria described in clauses 6.1 and 6.2 are not appropriate, in these cases the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests. The performance specification shall be included in the product description and documentation. The related specifications set out in clause 5.3 have also to be taken into account.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in clauses 6.1 and 6.2.

(4) Performance criteria for ancillary equipment tested on a stand alone basis

If ancillary equipment is intended to be tested on a stand alone basis, the performance criteria described in clauses 6.1 and 6.2 are not appropriate, in these cases the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests. The performance specification shall be included in the product description and documentation. The related specifications set out in clause 5.3 have also to be taken into account.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in clauses 6.1 and 6.2.

B. EN301489-17

General performance criteria

· Performance criteria A for immunity tests with phenomena of a continuous nature;

- Performance criteria B for immunity tests with phenomena of a transient nature;
- Performance criteria C for immunity tests with power interruptions exceeding a certain time.

The equipment shall meet the minimum performance criteria as specified in the following.

Criteria	During test	After test	
A POO	Shall operate as intended. (see note 1). Shall be no loss of function. Shall be no unintentional transmissions.	Shall operate as intended. Shall be no degradation of performance (see note 3) Shall be no loss of function. Shall be no loss of stored data or user programmable functions.	
B B POCE	May show loss of function (one or more). May show degradation of performance (see note 2). Shall be no unintentional transmissions.	Functions shall be self-recoverable. Shall operate as intended after recovering. Shall be no degradation of performance (see note 3 Shall be no loss of stored data or user programmable functions.	
PCCE	May be loss of function (one or more).	Functions shall be recoverable by the operator. Shall operate as intended after recovering. Shall be no degradation of performance (see note 3).	

NOTE 1:

Operate as intended during the test allows a level of degradation not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance.

If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

Report NO.: POCE200413040GRW

<u>V1.0</u> NOTE 2:

Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance.

If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended. NOTE 3:

No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed.

If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

Performance criteria for Continuous phenomena applied to Transmitters (CT)

The performance criteria A shall apply.

Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an ACKnowledgement (ACK) or Not ACKnowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Transient phenomena applied toTransmitters (TT)

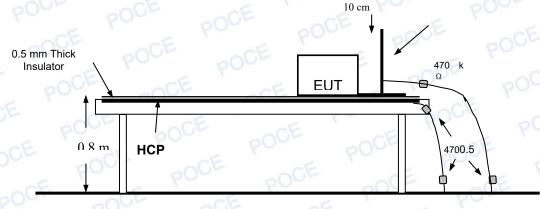
The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply.

Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Continuous phenomena applied to Receivers (CR) The performance criteria A shall apply.

Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Transient phenomena applied to Receivers (TR)


The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply.

Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test.

In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

E PO	POUL POCE OF PU
V1.0	Shenzhen POCE Technology Co., Ltd. Report NO.: POCE200413040GRW
3.2.2 Electrostatic Disch	harge
TEST SPECIFICATION	POCE POUL POCE POCE
Basic Standard:	IEC/EN 61000-4-2
Discharge Impedance:	330 ohm / 150 pF
Required Performance	B OF POUL POUL
Discharge Voltage:	Air Discharge:2kV/4kV/8kV (Direct)
	Contact Discharge:2kV/4kV (Direct/Indirect)
Polarity:	Positive & Negative
Number of Discharge:	Air Discharge: min. 20 times at each test point
	Contact Discharge: min. 200 times in total
Discharge Period:	1 second minimum

Block diagram of RS test setup

Ground

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC /EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC/EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

Severity Levels and Performance Criterion

Severity level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)
DOCE	±2	POC±2
2	±400	±4
3	±6 poce	±80E
4 POL	POCE ±8 POCE	±15
X PC	Special	Special

The test method shall be in accordance with CENELEC EN 61000-4-2 [2], clause 8.

Test Procedure

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

Contact discharge was applied to conductive surfaces and coupling planes of the EUT. During the a) test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second. The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the horizontal coupling plane. The remaining three test points shall each receive at least 50 direct contact discharges.

If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.

Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.

Air discharges at insulation surfaces of the EUT. It was at least ten single discharges with positive b) and negative at the same selected point.

Test Results

Report NO.: POCE200413040GRW

Please refer to the following :

			al	
Direct discharge				
Type of discharge	Discharge voltage (KV)	Observations Performance	Criteria Level	Result
Contact	±2	A DOCE	В	ACE
discharge	±4000	B	В	
POCE	E ±2	A	В	Pass
Air discharge	±4	PO B pO	BOCE	
PUC	2000 ±8 2000	B	В	
Indirect discharge	;			
Type of discharge	Discharge voltage (KV)	Observations Performance	Criteria Level	Result
	±2	A	OCB	OCE
HCP (6 sides)	±4	OCE A OCE	В	Deee
	±2 CE	A	В	Pass
VCP (4 sides)	±4	A POU	BOF	TOCE

Note1: The EUT loss communication link a while and it can self-recoverable after test.

3.2.3 **RF Electromagnetic Field**

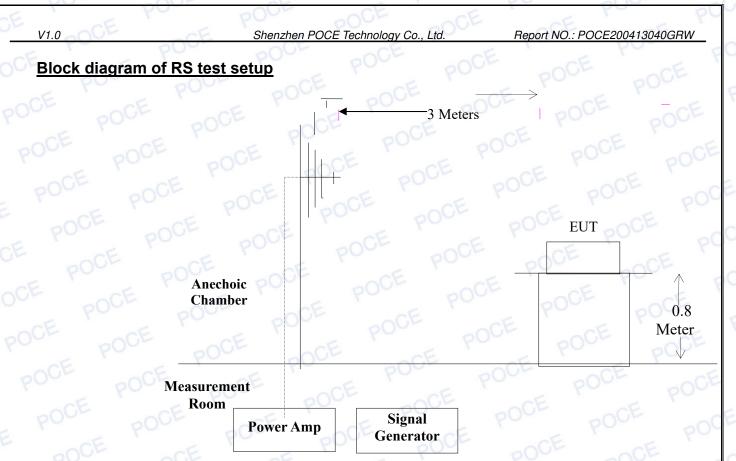
TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-3
Required Performance	A POUL POCE DOCE
Frequency Range:	80 MHz - 6000 MHz
Field Strength:	3 V/m
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Polarity of Antenna:	Horizontal and Vertical
Test Distance:	3 m POOL POOL POOL POOL
Antenna Height:	1.5 m
Dwell Time:	at least 3 seconds

TEST PROCEDURE

The EUT are placed on a table which is 0.8 meter high above the ground. The EUT is set 3 meters away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the six sides of the EUT must be faced this transmitting antenna and measured individually.

In order to judge the EUT performance, a audio analyzer is used to monitor SINAD values. All the scanning conditions are as following:


Condition of Test

- Fielded Strength 1.
- **Radiated Signal** 2.
- Scanning Frequency 3.
- 4. Sweep time of radiated
- 2. **Dwell Time**

Remark

3V/m (Severity Level 2) Modulated 80-1000MHz 1400MHz~2700MHz 0.0015 Decade/s 1 Sec.

V1.0

Note:

TABLE-TOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

PASS--

TEST RESULTS

Frequency **RF** Field R.F. Observations Perform. Range Azimuth Result Performance Position **Field Strength** Criteria (MHz) Top Front 3 V/m (rms) Rear PASS 80~6000 AM Modulated H/V Left 1000Hz, 80% Right **Bottom**

Please refer to the below test data:

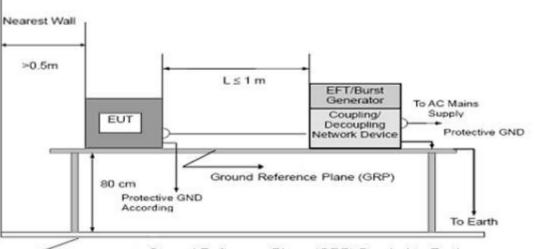
Note1: The EUT can maintain communication link and not operate unintentionally during the test also can operate without any loss of user control functions after test.

Shenzhen POCE	Technology Co.,	Ltd.	Report NO .: POCE2	200413040GRW
mon Mode	POCE	CE	1	P0-

3.2.4 Fast Transients Common M

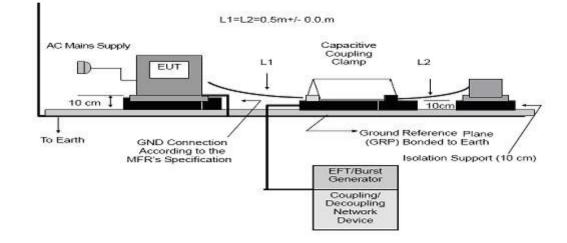
TEST SPECIFICATION

V1.0


	TOUE OF PUT
Basic Standard:	IEC/EN 61000-4-4
Required Performance	BOOL DOCE DOCE POUL
Test Voltage:	Power Line:1 kV Signal/Control Line:0.5 KV
Polarity:	Positive & Negative
Impulse Frequency:	5 kHz
Impulse Wave shape :	5/50 ns
Burst Duration:	15 ms
Burst Period:	300 ms
Test Duration:	Not less than 1 min.

TEST PROCEDURE

The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min. The other condition as following manner:


- a) The length of power cord between the coupling device and the EUT should not exceed 1 meter.
- b) Both positive and negative polarity discharges were applied.
- c) The duration time of each test sequential was 1 minute
- d) For the actual test configuration, please refer to the related Item -EUT Test Photos.

Block diagram of RS test setup

Ground Reference Plane (GRP) Bonded to Earth

Report NO.: POCE200413040GRW

Note:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table (0.8m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

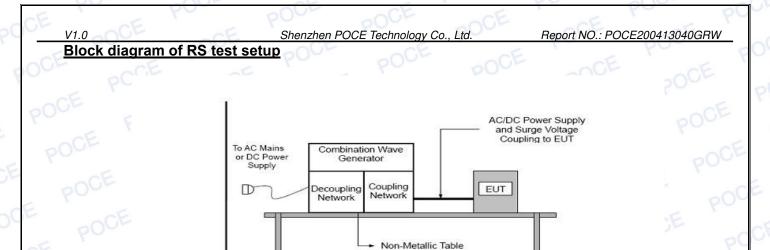
TEST RESULTS

--PASS---

Lead under Test	Level (±kV)	Coupling Direct/Clamp	Observations (Performance Criterion)	Result
POUL	oO±1	Direct	A	Pass
DCE NOCE	±1	Direct	POCE A DOCE	Pass
L+N	P±1	Direct	A	Pass

Please refer to the below test data:

Note1: The EUT can maintain communication link and not operate unintentionally during the test also can operate without any loss of user control functions after test.


V1.0	Shenzhen POCE Technology Co., Ltd. Report NO.: POCE200413040GRW
3.2.5 Surge Testing TEST SPECIFICATION	POCE POCE POCE POCE POCE
Basic Standard:	IEC/EN 61000-4-5
Required Performance	B POOL DOCE DOCE
Wave-Shape:	Combination Wave 1.2/50 us Open Circuit Voltage 8 /20 us Short Circuit Current
Test Voltage:	Power Port ~ Line to line: 1kV
Surge Input /Output:	L~N POOL POOL DOCE
Generator Source:	2 ohm between networks
Impedance:	12 ohm between network and ground
Polarity:	Positive/Negative
Phase Angle:	0 /90/180/270
Pulse Repetition Rate:	1 time / min. (maximum)
Number of Tests:	5 positive and 5 negative at selected points

TEST PROCEDURE

a) For EUT power supply:

The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2meters in length (or shorter).

- b) For test applied to unshielded unsymmetrical operated interconnection lines of EUT: The surge is applied to the lines via the capacitive coupling. The coupling /decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).
- c) For test applied to unshielded symmetrically operated interconnection /telecommunication lines of EUT: The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).
- d) For the actual test configuration, please refer to the related Item –EUT Test Photos.

TEST RESULTS

---PASS-

Please refer to the below test data:

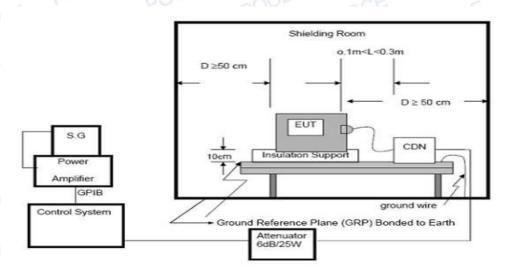
Location	Level (kV)	Pulse No	Surge Interval	Phase (deg)	Observations (Performance Criterion)	Result
PUC	POCE	PO	JE .	0°	A	Pass
POCE	200	E		90°	APOUL	Pass
E L-N	E	5 P	60s	180°	DOCE A DOCE	Pass
DE PUL	P	202	DOCE	270°	A	Pass

Note1: The EUT can maintain communication link and not operate unintentionally during the test also can operate without any loss of user control functions after test.

Report NO.: POCE200413040GRW

3.2.6 RF Common Mode TEST SPECIFICATION

V1.0


IEC/EN 61000-4-6
A POOL POOL POOL
0.15 MHz - 80 MHz
3 V rms
1kHz Sine Wave, 80%, AM Modulation
1 % of fundamental
at least 3 seconds

TEST PROCEDURE

The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min. The other condition as following manner:

- a) The field strength level was 3V.
- b) The frequency range is swept from 150 KHz to 80 MHz, with the signal 80% amplitude modulated with a 1kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d) For the actual test configuration, please refer to the related Item –EUT Test Photos.

Block diagram of RS test setup

For the actual test configuration, please refer to the related Item -EUT Test Photos.

NOTE:

FLOOR-STANDING EQUIPMENT

The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.co

Page 32 of 44

V1.0 TEST RESULTS

Shenzhen POCE Technology Co., Ltd.

Report NO.: POCE200413040GRW

---PASS----

Please refer to the below test data:

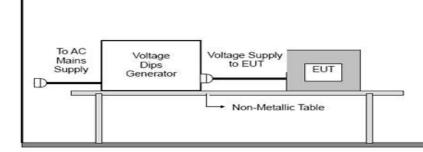
Test Ports (Mode)	Freq. Range (MHz)	Field Strength	Coupling type	Observations Performance		Results
Input/ Output AC. Power Port	0.15-80	3V(rms) AM Modulated	CDN	A	E APOC	PASS
Input/ Output DC. Power Port	POCE	1000Hz, 80%	CDN	N/A	N/A	N/A

Note1: The EUT can maintain communication link and not operate unintentionally during the test also can operate without any loss of user control functions after test.

Report NO.: POCE200413040GRW

Shenzhen POCE Technology Co., Ltd. Voltage Dips and Interruptions 3.2.7

TEST SPECIFICATION


V1.0

Basic Standard:	IEC/EN 61000-4-11
Required Performance	B (For 0% Voltage Dips) C (For 70% Voltage Dips) C (For 0% Voltage Interruptions)
Test Duration Time:	Minimum three test events in sequence
Interval between Event:	Minimum ten seconds
Phase Angle:	0°/45°/90°/135°/180°/225°/270°/315°/360°
Test Cycle:	3 times

TEST PROCEDURE

The EUT shall be tested for each selected combination of test levels and duration with a sequence of three dips/interruptions with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested. Abrupt changes in supply voltage shall occur at zero crossings of the voltage waveform.

Block diagram of RS test setup

For the actual test configuration, please refer to the related Item -EUT Test Photos.

TEST RESULTS

Please refer to the below test data:


TEST RESULTS	POCE	-PASS	POOLE	
Please refer to the below te	st data:			
Voltage Reduction	Duration (ms)	Perform Criteria	Observations Performance	Results
Voltage dip 0%	10 E	В	A P	PASS
Voltage dip 0%	20	В	POB	PASS
Voltage dip 70%	500	B	В	PASS
Voltage interruptions	5000	C POUL	COCE	PASS

Note: The EUT loss communication link a while and it can self-recoverable after test.

Page 34 of 44

V1.0 Shenzhen POCE Technology Co., Ltd. 4. TEST SETUP PHOTOS

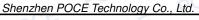
Radiated Emission 30MHz-1GHZ

Radiated Emission 1GHZ-6GHz

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

V1.0

Report NO.: POCE200413040GRW


Conducted disturbance (AC main)

Harmonic Current Emission and Voltage Fluctuation and Flicker

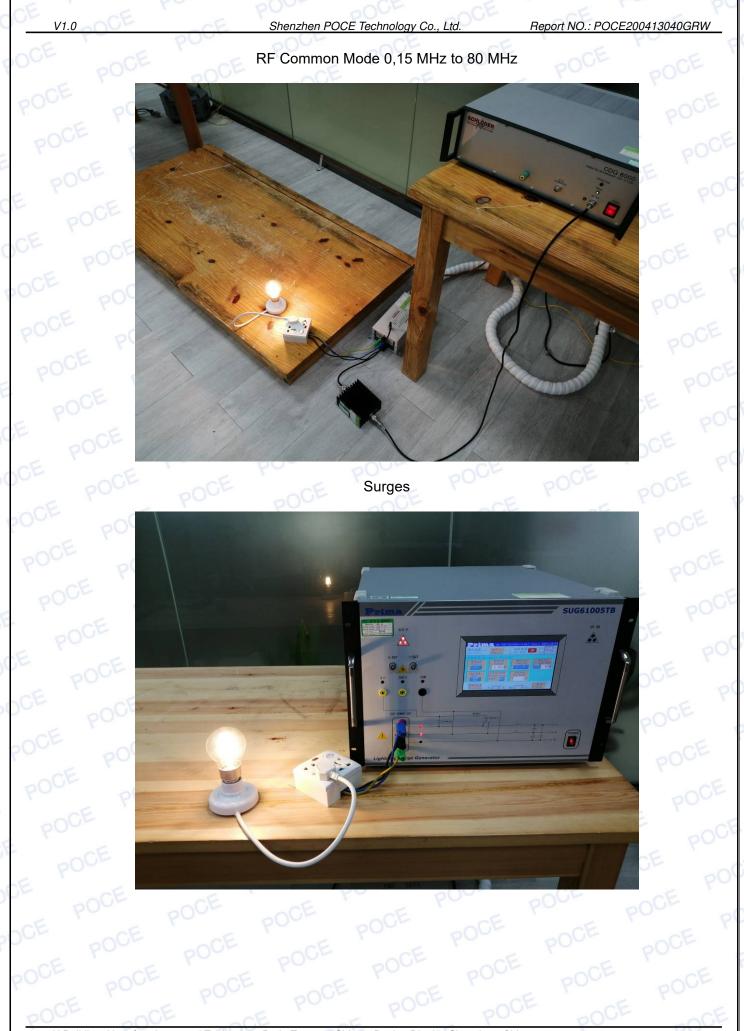
H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

V1.0

109

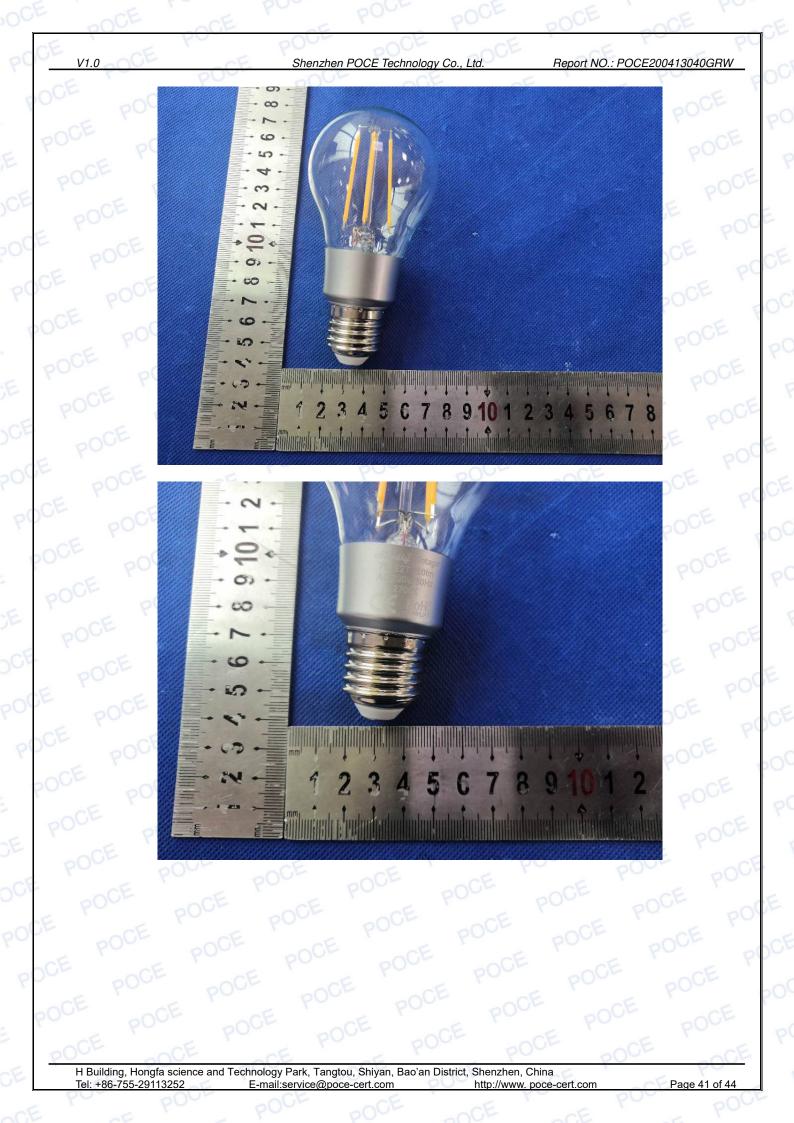
60

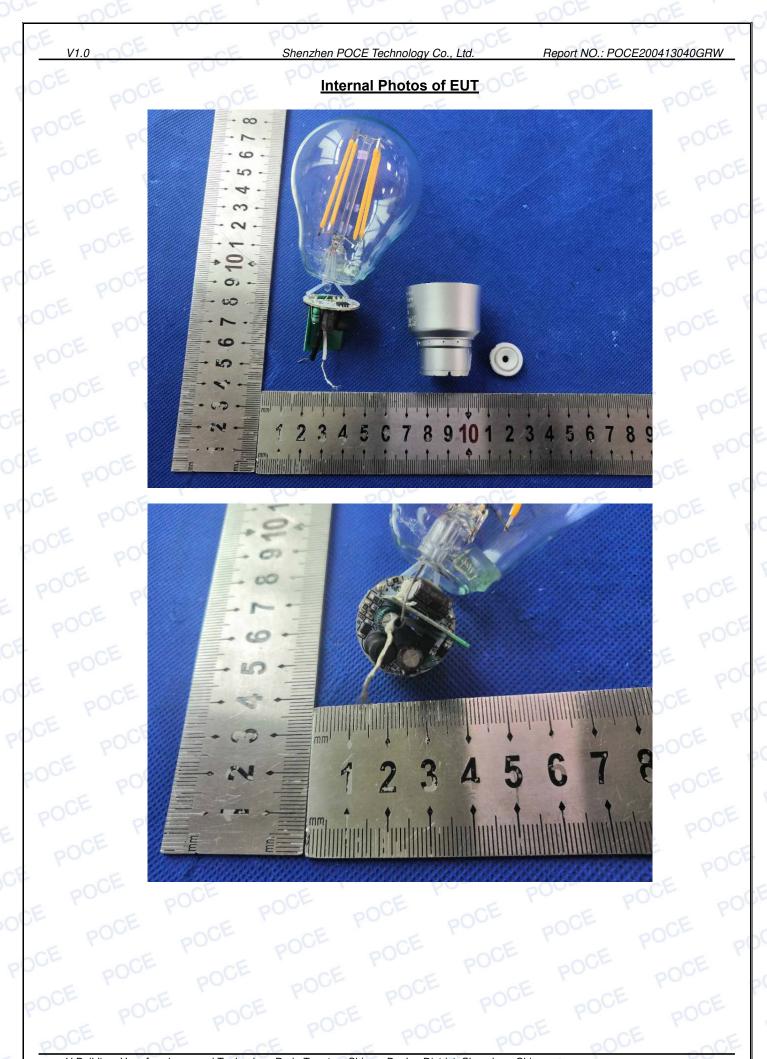
Report NO.: POCE200413040GRW


Electrostatic discharge

Fast Transients Common Mode

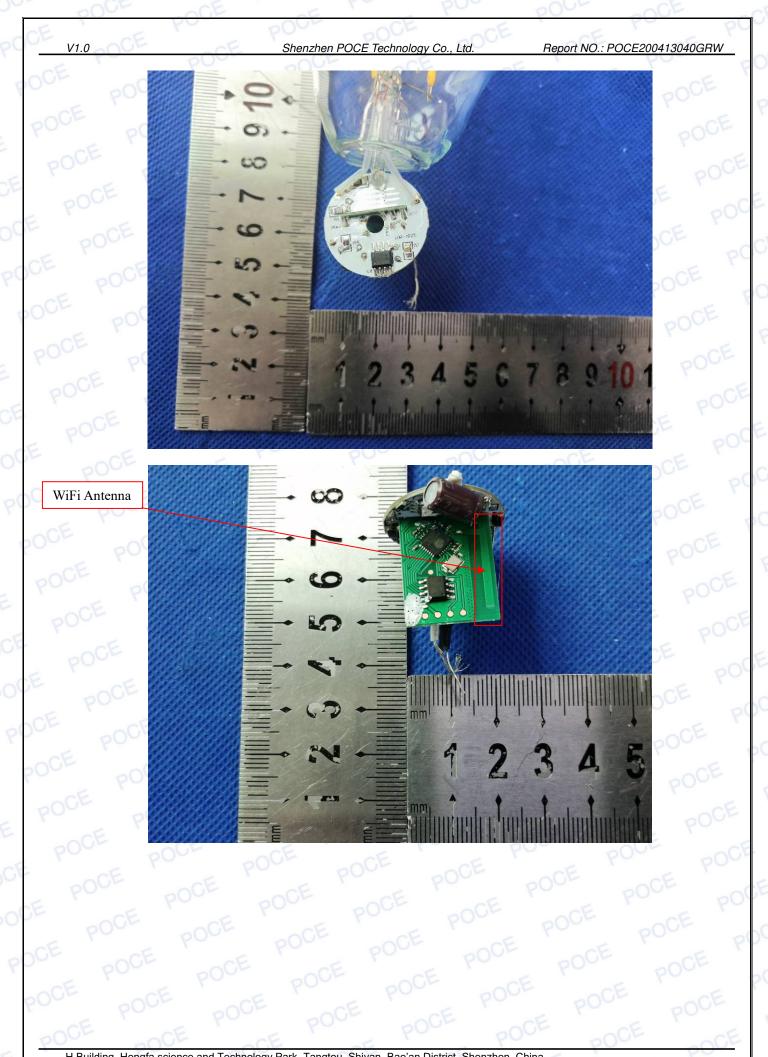
Page 37 of 44





H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

Page 40 of 44

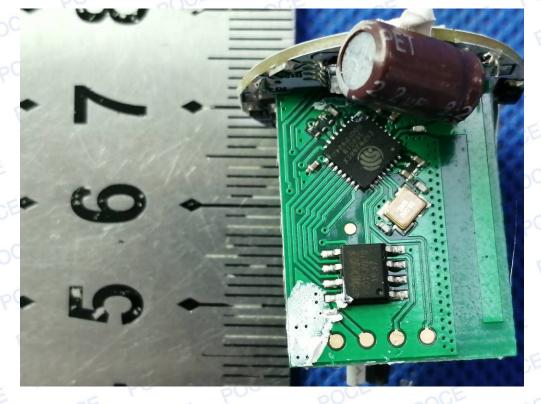

 H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China

 Tel: +86-755-29113252

 E-mail:service@poce-cert.com

 http://www.poce-cert.com

Page 42 of 44



V1.0

POCE

Report NO.: POCE200413040GRW

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com Shenzhen POCE Technology Co., Ltd.

Report NO.: POCE200413041MRW

HEALTH TEST REPORT

EN 62311: 2008

Report Reference No.	:	POCE200413041MRW
Applicant's Name	:	Allterco Robotics
Address of Applicant	;	103 Cherni Vrah Blvd, Sofia 1407, Bulgaria
100 and 1		
Test Firm	:	Shenzhen POCE Technology Co., Ltd.
Address of Test Firm	:	H Building, Hongfa Science and Technology Park, Tangtou,
		Shiyan, Bao'An District, Shenzhen, China
Test Specification Standard	;	EN 62311: 2008
		1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -
Product Name		LED Lamps
Model/ Type Reference	:	Shelly Vintage A60
Listed Models		Shelly Vintage ST64
Date of Receipt		Dec. 27, 2019
Date of Test	*	Dec. 27, 2019 - Apr. 20, 2020
Data of Issue	1	Apr. 21, 2020
Result		PASS

Compiled by:

Supervised by:

Amy Thur

Sofone for.

Amy Zhu/ File administrators

Stone Yin/ Technique principal

Shenzhen POCE Technology Co., Ltd.All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen POCE Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen POCE Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

H Building, Hongfa science an	d Technology Park, Tangtou, Shiyan, Bao'an	District, Shenzhen, China	
Tel: +86-755-29113252	E-mail:service@poce-cert.com	http://www.poce-cert.com	Page 1 of 8

V1.0

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE200413041MRW	Apr. 21, 2020
OF FU	POUL	POCE	E
0000000	OCE SOCE	CE PO PO	POUL
OCE	DE PU-	POUL POCE	DCE DCE
poo	POUL POCE	CE P	POUL

NOTE1:

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EU Directives.

NOTE2:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, ChinaTel: +86-755-29113252E-mail:service@poce-cert.comhttp://www.poce-cert.comhttp://www.poce-cert.com

V1.0

POCE Technology Co., Ltd.	Report NO.: POCE200413041MRW

Contents

Shenzhen

1.1	Test Standards		POU	POCE	4
1.2	Test Facility	POUL	20CE PC	CE DOC	
2. GEI	NERAL INFORMATION	POCE	UDCE)		
2.2	Environmental conditions	E COE		202 20	5
2.3	Product Description	ACE ACE	POUL	POOF	5
3. Me	thod of measurement	POCE	POOE	<u>Service</u>	6

CE3. Method of measurement

V1.0

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

1. TEST SUMMARY

1.1 TEST STANDARDS

V1 0

EN 62311: Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz – 300 GHz)

Council Recommendation 1999/519/EC of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0Hz to 300GHz) (Official Journal L 197 of 30 July 1999).

1.2TEST FACILITY

1.2.1 Address of the test laboratory

Shenzhen POCE Technology Co., Ltd.

Add. : H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.2.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS Registration Number. is L8229

Shenzhen POCE Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Jan. 06, 2016.

VCCI Membership No.: 3941

The 3m Semi-anechoic chamber of Shenzhen POCE Technology Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.:R-3941. Date of Registration: Oct. 22, 2018.

2. GENERAL INFORMATION

2.1 CLIENT INFORMATION

Applicant

Allterco Robotics

Address

103 Cherni Vrah Blvd, Sofia 1407, Bulgaria

Manufacturer

Allterco Robotics

Address

103 Cherni Vrah Blvd, Sofia 1407, Bulgaria

2.2 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

ICT DESCRIPTION	POUL POCE DOCE
Air Pressure	101KPa
Relative Humidity	35%-55 %
Normal Temperature:	15°C -35°C

2.3 PRODUCT DESCRIPTION

Equipment	LED Lamps
Trade Mark	N/A
Model Name	Shelly Vintage A60
Series model	Shelly Vintage ST64
Model Difference	All models have the same functionality, software and electronics, only the color, front frame shape and model names may differ. Test sample model: Shelly Vintage A60
Power Source	AC 230V/ 50Hz
2.4G WIFI	
Supported type:	IEEE 802.11b/802.11g/802.11n(H20)
Operation frequency	IEEE 802.11b/g/n20: 2412-2472MHz
Modulation Type	IEEE 802.11b/g/n(HT20): CCK/DSSS
Number of Channels	IEEE 802.11b/802.11g/802.11n(HT20): 13
Channels Separation	5MHz
Antenna type	PCB Antenna
Antenna gain	0 dBi
Note: For more detailed features of	escription, please refer to the manufacturer's specifications or the User's Manual.

lser's Manual.

3. Method of measurement

<u>Limit</u>

Basic restriction for electric, magnetic and electromagnetic fields (0Hz to 300GHz)

Frequency range	Magnetic flux density (mT)	Current density (mA/m ²)	Whole body average SAR(W/kg)	Localised SAR (head and trunk)(W/kg)	Localised SAR (limbs) (W/kg)	Power density, S (W/m ²)
0Hz	40	di la constante			005	OCE-
>0-1Hz	<u> </u>	8	-OCE	a construction of the second s		-
1-4Hz	F	8/f	PO	pour	20CH	- CE
4-1000Hz	pour	2	TOE		· · ·	<u>p00</u>
1000Hz-100kHz		f/500	<u> <u> P0</u>0</u>	DOUL	CE	
100kHz-10MHz	2000	f/500	0.08	2	4	paor
10MHz-10GHz	·	<u><u>p</u>os</u>	0.08	2	4	
10-300GHz			E -		2001	10

Notes:

1. f is the frequency in Hz.

2. The basic restriction on the current density is intended to protect against acute exposure effects on central nervous system tissues in the head and trunk of the body and includes a safety factor. The basic restrictions for ELF fields are based on established adverse effects on the central nervous system. Such acute effects are essentially instantaneous and there is no scientific justification to modify the basic restrictions for exposure of short duration. However, since the basic restriction refers to adverse effects on the central nervous system, this basic restriction may permit higher current densities in body tissues other than the central nervous system under the same exposure conditions.
3. Because of electrical inhomogeneity of the body, current densities should be averaged over a cross section of 1cm2 perpendicular to the current direction.

4. For frequencies up to 100 kHz, peak current density values can be obtained by multiplying the rms

value by $\sqrt{2(=1.414)}$. For pulses of duration t_p the equivalent frequency to apply in the basic restrictions should be calculated as=1/ (2 t_p)

5. For frequencies up to 100kHz and for pulsed magnetic fields, the maximum current density associated with the pulses can be calculated from the rise/fall times and the maximum rate of change of magnetic flux density. The induced current density can then be compared with the appropriate basic restriction.

6. All SAR values are to be averaged over any six-minute period.

7. Localised SAR averaging mass is any 10g of contiguous tissue; the maximum SAR so obtained should be the value used for the estimation of exposure. These 10g of tissue are intended to be a mass of contiguous tissue with nearly homogeneous electrical properties. In specifying a contiguous mass of tissue, it is recognised that this concept can be used in computational dosimetry but may present difficulties for direct physical measurements. A simple geometry such as cubic tissue mass can be used provided that the calculated dosimetric quantities have conservation values relative to the exposure guidelines.

8. For pulses of duration tp the equivalent frequency to apply in the basic restrictions should be calculated $as=1/(2t_p)$. Additionally, for pulsed exposures, in the frequency range 0,3 to 10GHz and for localised exposure of the head, in order to limit and avoid auditory effects caused by thermoelastic expansion, an additional basic restriction is recommended. This is that SA should not exceed 2mJ kg-1 averaged over 10g of tissue.

Shenzhen POCE Technology Co., Ltd.

Report NO.: POCE200413041MRW

Reference levels for electric, magnetic and electromagnetic fields (0Hz to 300GHz,unperturbed rms values)

valuesj				
Frequency range	E-field strength (V/m)	H-field strength (A/m)	B-field (uT)	Equivalent plane wave power density S _{eq} (W/m ²)
0-1Hz	POCE	3.2×10 ⁴	4×10 ⁴	P00- P0
1-8Hz	10000	$3.2 \times 10^4 / f^2$	$4 \times 10^4 / f^2$	DOF
8-25Hz	10000	4000/f	5000/f	- P
0.025-0.8KHz	250/f	4/f	5/f	DOF
0.8-3KHz	250/f	5	6.25	- 10-
3-150KHz	87	5	6.25	E - CE
0.15-1MHz	87	0.73/f	0.92/f	<u>600</u>
1-10MHz	87/f ^{1/2}	0.73/f	0.92/f	CE - OE
10-400MHz	28	0.073	0.092	2000
400-2000MHz	1.375f ^{1/2}	0.0037f ^{1/2}	0.0046f ^{1/2}	f/200
2-300GHz	61	0.16	0.20	10

Notes: 1. As indicated in the frequency range column.

2. For frequencies between 100kHz and 10GHz, S_{eq} , E^2 , H^2 and B^2 are to be averaged over any six-minute period.

3. For frequencies exceeding 10GHz, S_{eq} , E^2 , H^2 and B^2 are to be averaged over any 68/f^{1.05}-minute period (.in GHz).

4. No E-field value is provided for frequencies <1Hz, which are effectively static electric fields. For most people the annoying perception of surface electric charges will not occur at field strengths less than 20kV/m. Spark discharges causing stress or annoyance should be avoided.

EMF Assessment Model

Predication of EMF limit at a given distance Equation from page 26 of EN 62311, Edition 2008

$$E = \eta_0 H = \frac{\sqrt{30PG(\theta, \phi)}}{r}$$

Where:

E: E-field strength (V/m)

P: power input to antenna (Watt)

G: is the antenna gain relative to an isotropic antenna;

 θ, ϕ : are elevation and azimuth angles to point of investigation;

r: is the distance from observation point to the antenna;

 η_0 : is the characteristic impedance of free space.

Page 8 of 8

Test Result

Note: Please refer to the report NO .: POCE200413042GRW.

			WIFI 802.111	BOE !		
Test Frequency (MHz)	Minimum Separation Distance (cm)	Output Power (dBm)	Output Power (W)	Antenna Gain (Nemeric)	E-field strength Limit (V/m)	E-field strength At 20 cm (V/m)
2412	20	14.61	0.0289	1.0000	61	4.6562
2442	20	14.02	0.0252	1.0000	61	4.3504
2472	20	14.08	0.0256	1.0000	61	4.3806

CE	AF 1	WIFI 802.11g	000	C	= -CF
Minimum Separation Distance (cm)	Output Power (dBm)	Output Power (W)	Antenna Gain (Nemeric)	E-field strength Limit (V/m)	E-field strength At 20 cm (V/m)
20	12.46	0.0176	1.0000	61 👳	3.6352
20	12.44	0.0175	1.0000	61	3.6269
20	12.65	0.0184	1.0000	61	3.7156
POCE	- OCEN	/IFI 802.11n(H	20)	POCE	POCE
	Separation Distance (cm) 20 20	Separation Distance (cm)Output Power (dBm)2012.462012.442012.65	Minimum Separation Distance (cm)Output Power (dBm)Output Power (W)2012.460.01762012.440.01752012.650.0184	Minimum Separation Distance (cm)Output Power (dBm)Output Power (W)Antenna Gain (Nemeric)2012.460.01761.00002012.440.01751.0000	Minimum Separation Distance (cm)Output Power (dBm)Output Power (W)Antenna Gain (Nemeric)E-field strength Limit (V/m)2012.460.01761.0000612012.440.01751.0000612012.650.01841.000061

W	'IFI	802.	11	n((H2	20)
				1.74			

	20				•	
POCE	POCE	- CEW	/IFI 802.11n(H	20)	POCE	POCE
Test Frequency (MHz)	Minimum Separation Distance (cm)	Output Power (dBm)	Output Power (W)	Antenna Gain (Nemeric)	E-field strength Limit (V/m)	E-field strength At 20 cm (V/m)
2412	20	11.78	0.0151	1.0000	61	3.3615
2442	20	11.52	0.0142	1.0000	61 👓	3.2624
2472	20	11.21	0.0132	1.0000	61	3.1480

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

APPLICATION FOR CE LVD TEST REPORT

On Behalf of

Prepared For	:	Allterco Robotics		
		103 Cherni Vrah Blvd,	Sofia 1407, E	Bulgaria

Product Name		LED Lamps		
Model	00	Shelly Vintage	A60, Shelly \	/intage ST64

Prepared By : SHENZHEN POCE TECHNOLOGY CO., LTD. H Building, Hongfa Science And Technology Park, Tangtou, Shiyan, Bao'An District, Shenzhen, China

Test Date	: Apr. 07, 2020 - Apr. 14, 2020
Date of Report	: Apr. 14, 2020
Report No.	: POCE200413057ERS

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior written consent of Shenzhen POCE Technology Co., Ltd.

	TEST REPORT
Self -ballasted LED	EN 62560 -lamps for general lighting services by voltage > 50V – Safety specifications
Report reference No:	POCE200413057ERS
Compiled by (+ signature):	Eva
Approved by (+ signature):	Machael Mo
Date of issue:	Apr. 14, 2020
Testing laboratory	
Name	SHENZHEN POCE TECHNOLOGY CO., LTD.
Address	H Building, HongFa Science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China
Testing location:	As above
Client	
Name:	Allterco Robotics
Address:	103 Cherni Vrah Blvd, Sofia 1407, Bulgaria
Manufacturer	
Name:	Allterco Robotics
Address:	103 Cherni Vrah Blvd, Sofia 1407, Bulgaria
Test specification	
Standard:	EN 62560:2012+A1:2015
Test procedure	LVD
Procedure deviation:	N.A.
Non-standard test method:	N.A.
Test item	
Description	LED Lamps
Trademark	N/A
Model and/or type reference	Shelly Vintage A60, Shelly Vintage ST64
Rating(s)	

THE DIACE

Test case verdicts	
Test case does not apply to the test object	N(.A.)
Test item does meet the requirement	P(ass)
Test item does not meet the requirement	F(ail)
Testing	DOCE DOE POUL
Date of receipt of test item	Apr. 07, 2020
Date(s) of performance of test	: Apr. 07, 2020 - Apr. 14, 2020
General remarks	CE OCE POUL POUL
This report shall not be reproduced except in	n full without the written approval of the testing laboratory.
The test results presented in this report rela	te only to the item tested.
Clause numbers between brackets refer to o	clauses in EN 62560:2012+A1:2015
"(see remark #)" refers to a remark appende	ed to the report.
"(see Annex #)" refers to an annex appende	d to the report.
Throughout this report a comma is used as	the decimal separator.
General product information:	
The all models are same except their model	number and appearance , and all testes are based

H Building, Hongfa Science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: 86-755-29113252 Web: http://www.poce-cert.com E-mail: service@poce-cert.com

POCE

OCE

Copy of marking plate

 LED Lamps

 Model No.: Shelly Vintage A60

 Rating: AC230V, 50Hz, 7W

 Importer: xxxx

 Address: xxxx

 Manufacturer: Allterco Robotics

 Address: 103 Cherni Vrah Blvd, Sofia 1407, Bulgaria

 Made in China

Note: Due to the similar of rating label, only above label is listed.

Clause	Requirement - Test	Result - Remark	Verdict
CE	pour pour	-OCE -CE	1
4	GENERAL REQUIREMENTS		POCE
4.10	The lamp shall be so designed and constructed that in normal use cause no danger to the user.	No Danger	P
4.2	Self-ballasted LED-Lamp are non-repairable.	Non-Repairable	Р

5 900	MARKING	PUT POUL	
5.1	Mandatory marking	CE DOCE	ĘΡ
E	- mark of origin	OCE PU	Ν
1	- rated supply voltage (V).	AC230V	CP
CE	- rated wattage (W)	7W CE	Р
	- rated frequency (Hz)	50Hz	POP
5.2	Addition marking	POCE	Р
E	a) burning position	CETT	N
POOL	b) rated current (A)	- PUU POUL	Ν
200	c) weight significantly higher	E DOCE DOE	N
40	e) not suitable for dimming Symbol used.	CE POUL	Ν
PC	d) eye protection	See separate test requirement of EN 62560:2012+A1:2015	ΈP
L I	Marking durable and legible	POUL POCE	P
5.3	Rubbing 15 s water, 15 s petroleum; marking legible	CE F	Р

6000	INTERCHANGEABILITY		
6.1 000E	Cap interchangeability in accordance with EN 62560: 2012+A1:2015	Complied	Р
	Gauge in accordance with EN 62560: 2012+A1:2015	E	P
6.2	Bending moment	PUL POU	P
P	Bending moment imparted by the lamp at the lampholder	E27 Bending moment < 0.1Nm	OE P

TOE	PROTECTION AGAINST ACCIDENTAL CONTACT WITH LIVE PARTS				
OCE	Internal, basic insulated or live metal parts not accessible	POOCE POOL	POPE		
pus	Tested with a test finger with a force of 10 N	10N, no hazards	POC		
200	Compliance checked with appropriate gauges	Compliance with requirement	Р		

8 90	INSULATION RESIS	TANCE AND	ELECTRIC STR	RENGTH	PO	POU	p(
8.2	After storage 48 h at	91-95% relative	e humidity and 2	20- 92%	, 30°C	20	CE P

E	EN 62560	OCE OF	
Clause 📀	Requirement - Test	Result - Remark	Verdict
CE	POUL POUL	TOCE TE	1
CF.	30 $^\circ\! \mathbb C$ measuring of insulation resistance with d.c. 500 V (M $\Omega)$:	PO POUL	POCE
005	\geq 4 M Ω for double or reinforced insulation .	>100MΩ	BC
8.3	Immediately after clause 8.2 el ectric strength test for 1 min	DOCE OCE	Р
40	Double or reinforced insulation, 4U + 2000 V	2920V	PO
200	No flashover or breakdown	POUL	Р

9	MECHANICAL STRENGTH	CE PU	3
J.C.	Torsion resistance of unused lamps	POCE	CP
9.1	Torque test	DOCE DCE	Р
	B15dCap 1,15 Nm	POUL POUL	PON
DOCE	B22d Cap 3,0 Nm	POCE DOCE	N
	E11 Cap 0,8 Nm	OCE	N
POU	E12 Cap	PUU POUL	No
-0	E14 Cap1,15 Nm	E DOCE OCE	N
40	E17 Cap1,5 Nm	CE PUC	NP
D	E26 or E27 Cap 3,0 Nm	E27 Cap: 3,0 Nm	CE P
E	GX 53 Cap3,0 Nm	OCE CE	N
9.2	Torsion resistance of lamps after a defined time of usage	E PUC P	P
DCE	Torsion resistance of used lamp	POCE DOCE	PE
9.3	Repetition of clause 8	OCE	Р
pour	Clause 8 shall comply after the mechanical strength test.	PUT POUL	PC

10	CAP TEMPERATURE RISE			1	<u>- 20</u> ,
E PO	The cap temperature rise Δt_s of the lamp shall not exceed 120 K.	<120K	PUCE	POU	PP
P	DOLE DOLE OF		PUU	pO	

11	RESISTANCE TO HEAT		OCE
OCE	Parts of insulating material retaining live parts in position, ball-pressure test:	POCE POCE	POCE
DOCE	- part; test temperature (°C)	PCB:125°C	Р
10	- part; test temperature (°C)	Plastic part:80℃	PP

12	200	RESISTANCE TO FLAME AND IGNITION	POUL	POCE	2001	ii
E		External parts of insulating material preventing	TOCE	CE	40	_ P P
	P(electric shock glow-wire test 650 $^\circ \! \mathbb{C}$	PUS	POUL	00	CE

_

Clause	Requirement - Test	Result - Remark	Verdict
CE	POUL POUL	DOF DOE	al c
	- flame extinguished within 30 s	PO POU	POP
OCE	- no flaming drops igniting tissue paper	POCE	P
13	FAULT CONDITIONS	E DE DE	PU
13.2	Extreme electrical conditions (dimmable lamps)	- POUL POUL	NoC
	Lamp withstands overpower condition >15 min.	DE DOE OCE	N
40	Lamp fails safe after 15 min overpower condition	CE PU	NpC
e pC	Lamp with automatic protective device or power limiter, test performed 15 min. at limit.	OF POUL POR	CE N
13.3	Extreme electrical conditions (non-dimmable lamps)	POOL	OCFP
CE	Tested according 13.2 (as far as possible)	DOCE DE L	Р
13.4	Short-circuit across capacitors	(see appended table)	POP
13.5	Fault conditions: where diagram indicates fault condition impairs safety, electronic components have been short-circuited or disconnected	(see appended table)	POCE
13.6	When operated under fault conditions the lamp	CE PU PUU	PO
000	- does not emit flames or molten material	POCE DOCE	Р
	- does not produce flammable gases or smoke	OCE SCE FE	_ P P
PC	- live parts not accessible	POU PO	P
E,	After the tests the insulation resistance with d.c. 1000 V complies with requirements of Cl. 8.1 :	POCE POCE	OCE
CE	THE PUT POUL	POCE OCE	OF

14 (16)	CREEPAGE DISTANCES AND CLEARANCES	OCE	
Creep age distances and clearances according to Table and 4 of EN 62560: 2012+A1:2015, as appropriate		(see appended table)	PBC
POU	Printed boards see clause 14 of EN 62560: 2012+A1:2015	E POOL POOL	P
PO	Insulating lining of metallic enclosures	POUL DOC	Р

REPORT NO: POCE18031301VRS SHENZHEN POCE TECHNOLOGY CO., LTD.

Table 12.4 a)	Thermal tests (normal operation) of Section 12.4	POUL	POCE	POPE
OCE	Lamp used	POOL	Self-ballasted lar	np	
AE I	Mounting position of luminaire	CE	As in normal use	PU	PD0.
POUL	Test Voltage (V)		243.8V, 50Hz	POUL	-00
POCE	Remark: measured temperatures	corrected for Ta =	25 ℃:)E DOC	E
Temperature (°C) of part	Test	ing temperature (°	C)	limit (℃)
Plastic part	POCE OCE	-E	32.6	00-00	80
Internal wire	E	POUL	49.0	OCE	200
PCB near IC	POUL	OCE	61.2	100	130
LED PCB	DCE	PUC	56.3	DOCE	130
C1	POUL POU	FOCE	73.8	1	105
C3	DOCE	OF PO	74.2	POCE	105
C5	PC PC	000	69.7	I OF	105
Ambient	POUL	OCE	25.0	POUL	
Supplementary i	nformation:	p(000 000	CE O	E
E	POUL	POCE	OCE	CE PU	OF P

Tables

POCE

14(16)	TABLE: Clea	irance /	And Creep a	ge Distance Me	easurements		- Pl	P
clearance cl a distance dcr a			Up (V)	U r.m.s. (V)	required cl (mm)	cl (mm)	required dcr (mm)	dcr (mm)
L to N	POUL	pO	<420	230	1.36	1.81	1.36	1.81

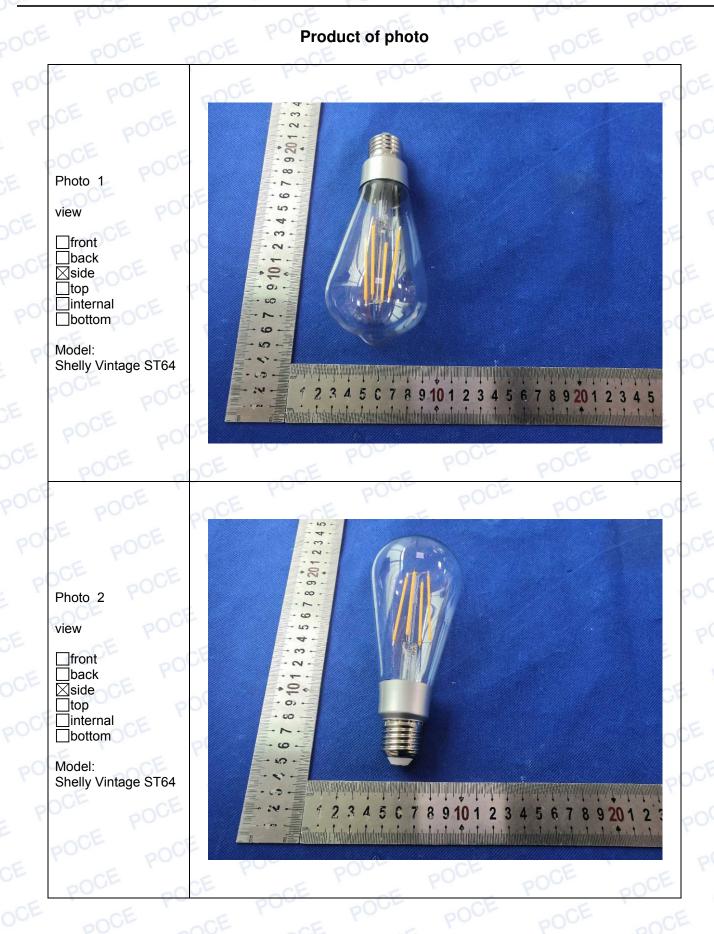
H Building, Hongfa Science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China E-mail: service@poce-cert.com Tel: 86-755-29113252 Web: http://www.poce-cert.com

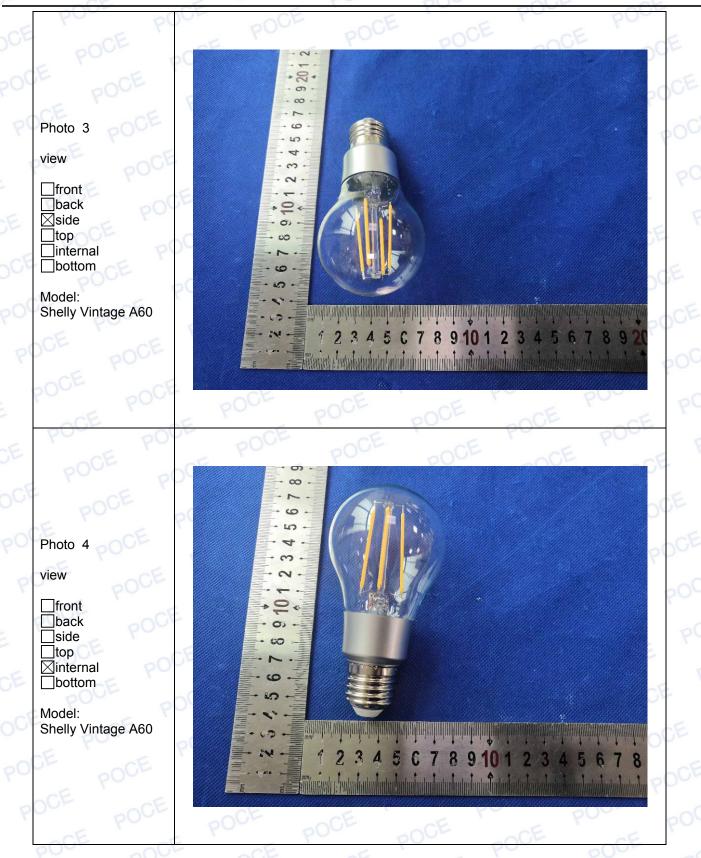
OCE

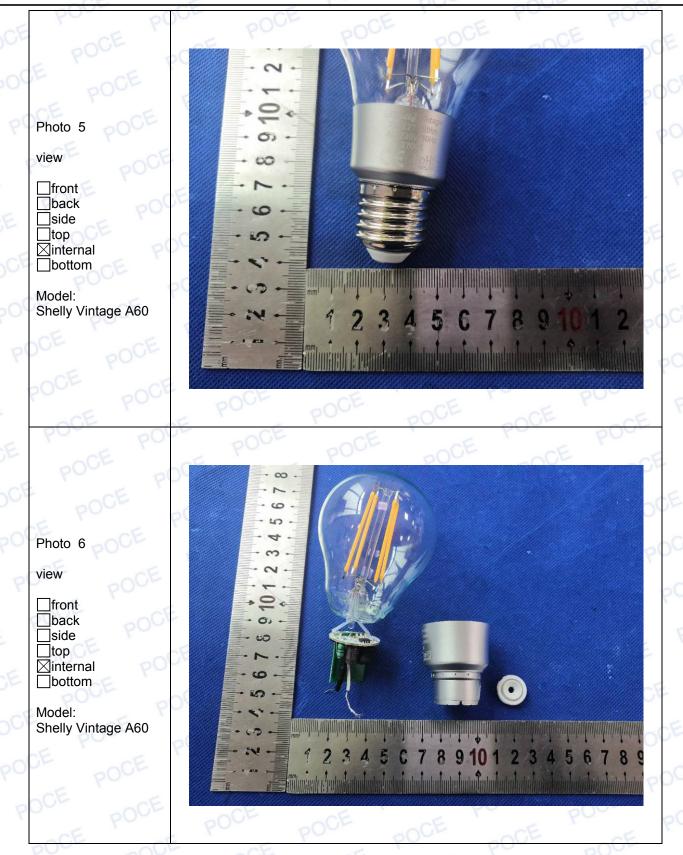
POCE

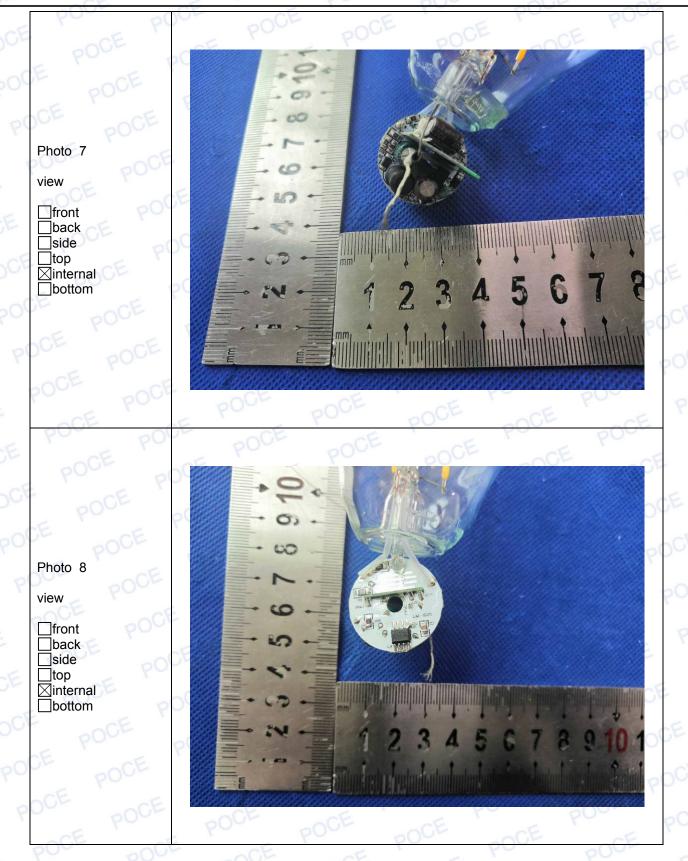
POCE

POCE


	ical components information	OCE	CE F	PUC	PC
Object/part No.	Manufacturer/ trademark	Type/model	Technical data	Standard	Mark(s conforr
Plastic part	CIXI FALAIXIN PLASTIC FACTORY	6170	80℃; V-0	UL 94 000	UL E3035:
Alt. POCE	Various	Various	80℃; V-0	UL 94	UL
PCB POC	SHANDONG JINBAO TECH- INNOV CORPORATION	ZD-16F	V-0; 130°C	UL 746 UL 94	UL E14194
Alt.	Various	Various	V-0; 130°C	UL 746 UL 94	ULOC
LED PCB	SHENZHEN KAZ CIRCUIT CO LTD	KZ-1	V-0; 130°C	UL796	UL E33707
Alt.	Various	Various	V-0; 130°C	UL796	UL
Internal wire	JIANGYIN HAOCHENG ELECTRIC APPLIANCE WIRE & CABLE MFG CO LTD	3135	600V, 200°C; 18AWG	UL 758	UL E22758
Alt.	Various	Various	600V, 200°C; 18AWG	UL 758	DUCE
Heat shrinkable sleeve	SHENZHEN WOER HEAT- SHRINKABLE MATERIAL CO LTD	RSFR	600V 125℃, VW-1	UL 224	UL E2039
Alt.	Various	Various	600V 125℃, VW-1	UL 224	UL


Tables


POCE


H Building, Hongfa Science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China E-mail: service@poce-cert.com Tel: 86-755-29113252 Web: http://www.poce-cert.com

OCE

*** THE END OF REPORT ***

V1.0		Shenzhen POCE Technology Co., Ltd.	Report NO.: POCE200413042GRW
RA		DIO TEST REPO	RT
		ETSI EN 300 328 V2.2.2 (2019-07)	
Report Reference No.		POCE200413042GRW	
Applicant's Name		Allterco Robotics	
Address of Applicant	•	103 Cherni Vrah Blvd, Sofia 1407, Bul	garia
Test Firm	:	Shenzhen POCE Technology Co., Ltd.	
Address of Test Firm	1	H Building, Hongfa Science and Techn Bao'An District, Shenzhen, China	ology Park, Tangtou, Shiyan,
Test Standard	:	ETSI EN 300 328 V2.2.2 (2019-07)	
Product Name	:	LED Lamps	
Model/Type Reference		Shelly Vintage A60	
Listed Models	:	Shelly Vintage ST64	
Date of Receipt	1	Dec. 27, 2019	
Date of Test	:	Dec. 27, 2019 - Apr. 20, 2020	
Data of Issue		Apr. 21, 2020	
Test Result	8	PASS	

Compiled by:

Supervised by:

The

Amy Zhu/ File administrators

Sofone for

Stone Yin/ Technique principal

proved Bill Yuan/Manager

Shenzhen POCE Technology Co., Ltd.All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen POCE Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen POCE Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE200413042GRW	Apr. 21, 2020
E PU	POUL	POCE	E FC PI
OCE	OCE OCE	POUL POUL	DOCE
CF. F	POU	POUL DOCE	ACE OF
pour	POCE	CE P	POUL
OCE	OF PO	POUL POCE	DOCE DE

NOTE1:

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EU Directives.

CE CE COE

NOTE2:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

CONTENTS

Shenzhen POCE Technology Co., Ltd.

1 TES	ST SUMMARY	PUS	POUL	POCE	
2 GE	NERAL INFORMATION	POCE	DOCE	SCE	
2.1	Client Information		-5	PUC	P
2.2	Test Environmental conditions	PUC	POUL	POCE	ĕ
2.3	Description of Support Units	- DOG	-	E	
2.4	Description of EUT	CE '	PU-	POL	~
2.5	Test Frequency and Description of Test Modes				
2.6	Test Facility	000	OCE	- AF	
2.7	Statement of the measurement uncertainty		X		000
2.8	Measurement Instruments List	POUL	POCE	OCE	
TES	ST ITEM AND RESULTS			THE REAL	
	RF output power				
3.1	RF output power Power Spectral Density	POOL	DOCE	- CF	
3.2	Power Spectral Density	E C	E.		1.
3.3	Duty Cycle, Tx-sequence, Tx-gap	POU	200	,E.	1
3.4	Medium Utilization (MU) factor	CE	CE	CE PU	·1.
3.5	Adaptivity (non-FHSS)			<u></u>	1
3.6	Occupied Channel Bandwidth	OCE	OCE	- ALE	2
3.7	Transmitter unwanted emissions in the out-of-ba	and domain		200	2
3.8	Transmitter unwanted emissions in the spurious	domain	POCE	OCE	2
3.9	Receiver spurious emissions				
3.10			PUU	POUL	3
РН	IOTOGRAPHS OF TEST	POCE	POCE		
рц	IOTOGRAPHS OF EUT	POC		E	CE 2
		CE			
AN	NEX E			CE.	3

POCE

POCI

V1.0

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

ETSI EN 300 328 V2.2.2 (2019-07) --- Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz band; Harmonised Standard for access to radio spectrum.

1.2 Summary of Test Result

Item	Reference	Result	
RF output power	ETSI EN 300 328 V2.2.2 Sub-clause 4.3.2.2	PASS	
Power Spectral Density	ETSI EN 300 328 V2.2.2 Sub-clause 4.3.2.3	PASS	
Duty Cycle, Tx-sequence, Tx-gap	ETSI EN 300 328 V2.2.2 Sub-clause 4.3.2.4		
Medium Utilisation (MU) factor	ETSI EN 300 328 V2.2.2 Sub-clause 4.3.2.5	N/A _{note1}	
Adaptivity (non-FHSS)	ETSI EN 300 328 V2.2.2 Sub-clause 4.3.2.6	PASS	
Occupied Channel Bandwidth	ETSI EN 300 328 V2.2.2 Sub-clause 4.3.2.7	PASS	
Transmitter unwanted emissions in the out-of-band domain	ETSI EN 300 328 V2.2.2 Sub-clause 4.3.2.8		
Transmitter unwanted emissions in the spurious domain	ETSI EN 300 328 V2.2.2 Sub-clause 4.3.2.9	PASS	
Receiver spurious emissions	ETSI EN 300 328 V2.2.2 Sub-clause 4.3.2.10	PASS	
Receiver Blocking	ETSI EN 300 328 V2.2.2 Sub-clause 4.3.2.11	PASS	
Geo-location capability	ETSI EN 300 328 V2.2.2 Sub-clause 4.3.2.12	N/A _{note2}	

Note1: This requirement does not apply to adaptive equipment. Note2: This equipment without geo-location capability function.

2 GENERAL INFORMATION

2.1 Client Information

Applicant

Allterco Robotics

Address

V1.0

103 Cherni Vrah Blvd, Sofia 1407, Bulgaria

Manufacturer

Allterco Robotics

Address

103 Cherni Vrah Blvd, Sofia 1407, Bulgaria

2.2 Test Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature	Normal Temperature:	25°C	
Voltage	Normal Voltage	AC 230V	
Other OCE	Relative Humidity	55 % 000	
Other	Air Pressure	101 kPa	

Note: The environmental conditions and voltage of this test are in accordance with the specifications of the standard sub-clause 5.1.2., All test results shall only be performed at normal test conditions.

2.3 Description of Support Units

The EUT has been tested with support equipments as below:

21	Description	Information			Manufacturer Remark		Certificate
8	I	POUL	POPE	POCE	DOCE	I	POUL
	POUL	POCE	POCE	POCI	E I OCE	POPUL	P900

Shenzhen POCE Technology Co., Ltd.

2.4 Description of EUT

Equipment	LED Lamps
Trade Mark	N/A
Model Name	Shelly Vintage A60
Series model	Shelly Vintage ST64
Model Difference	All models have the same functionality, software and electronics, only the color, front frame shape and model names may differ. Test sample model: Shelly Vintage A60
Power Source	AC 230V/ 50Hz
2.4G WIFI	
Supported type:	IEEE 802.11b/802.11g/802.11n(H20)
Operation frequency	IEEE 802.11b/g/n20: 2412-2472MHz
Modulation Type	IEEE 802.11b/g/n(HT20): CCK/DSSS
Number of Channels	IEEE 802.11b/802.11g/802.11n(HT20): 13
Channels Separation	5MHz
Antenna type	PCB Antenna
Antenna gain	0 dBi

Frequency and I	Description of Test Freque		
Channel	Frequency (MHz)	Channel	Frequency (MHz)
TOOLE	2412	8 00	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
500	2432	12	2467
6	2437	13	2472
7-000	2442	E P	pour of

2.5 Test Frequency and Description of Test Modes

The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Through Preliminary tests were performed in all tests in different data rata and antenna configurations at lowest channel, the data rates of worse case as above were chosen for final test.

CE	E	E PU	802.11 b/g/n(HT20) poce	TOCE
Channel	POL	Energy DOC	FOCE	PS -	
	No.	Frequency	В	G	N20
Lowest	CH01	2412MHz	1Mbps	6Mbps	MCS0
Middle	CH07	2442MHz	1Mbps	6Mbps	MCS0
Hightest	CH13	2472MHz	1Mbps	6Mbps	MCS0

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

2.6 Test Facility

CNAS Registration Number is L8229

Shenzhen POCE Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Jan. 06, 2016.

VCCI Membership No.: 3941

The 3m Semi-anechoic chamber of Shenzhen POCE Technology Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.:R-3941. Date of Registration: Oct. 22, 2018.

2.7 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen POCE Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

UU -		
No.	Item	Uncertainty
700	Radio Frequency	< ±1 x 10 ⁻⁵
	RF power density, conducted	±2.5dB
2	RF power, conducted	±1.5dB
3	Spurious emissions,conducted	±2.5dB
4	All emissions,radiated(<1G)	±3.38dB
5	All emissions,radiated(>1G)	±3.38dB
6	Frequency Stability	±1.3 x 10 ⁻⁶
OCE	Humidity	± 4%

2.8 Measurement Instruments List

No.	Equipment	Manufacturer	Type No.	Seri	al No.	Calibration Date
9PE	Spectrum Analyzer	Agilent	E4408B	56110	POCE-EY-002	2019/12/11
2	Spectrum Analyzer	Keysight	N9020A	MY53420323	POCE-EY-032	2019/12/11
3	Power Sensor	Keysight	U2002H	MY51190005	POCE-EY-049	2019/12/11
4	Power Meter	Keysight	E4416A	MY5303506	POCE-EY-048	2019/12/11
5	Signal generator	Keysight	N5182A	MY50143455	POCE-EY-034	2019/12/11
6	Vector signal generator	Keysight	N5181A	MY48180415	POCE-EY-040	2019/12/11
7	Horn Antenna	Schwarzbeck	JB1	A091114	POCE-EY-037	2019/12/11
8	Broadband Antenna	Sunol Sciences Corp	DRH-118	A062013	POCE-EY-036	2019/12/11
9	Wideband radio communicatio n tester	R&S	CMW500	113410	POCE-EY-033	2019/12/11
10	Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	POCE-EY-011	2019/12/11
11	Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	POCE-EY-016	2019/12/11
12	LF Line 2	Germany	EI	E I	POCE-EY-020	2019/12/11
13	LF Line 1	Germany	_ 1 00	1 000	POCE-EY-017	2019/12/11
14	Thermometer	P007 .	CTH-608	SCE /	POCE-EY-027	2019/12/11
15	HF line 1	LE	I		POCE-EY-018	2019/12/11
16	HF line 2	POP	OCT	- CFI	POCE-EY-019	2019/12/11
17	Humidity Chamber	POCE	WHTH-800- 40-880	I I	POCE-SY-062	2019/08/26

Shenzhen POCE Technology Co., Ltd.

Note: Calibration is valid for one year.

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com POCE

POU

V1.0

3 TEST ITEM AND RESULTS

3.1 RF output power

Limit

ETSI EN 300 328 V2.2.2 -- Sub-clause 4.3.2.2 : be equal to or less than 20 dBm

Test method

Step 1:

- Use a fast power sensor with a minimum sensitivity of -40 dBm and capable of minimum 1 MS/s.
- Use the following settings:
 - Sample speed 1 MS/s or faster.
 - The samples shall represent the RMS power of the signal.
 - Measurement duration: For non-adaptive equipment: equal to the observation period defined in clause 4.3.1.3.2 or clause 4.3.2.4.2. For adaptive equipment, the measurement duration shall be long enough to ensure a minimum number of bursts (at least 10) is captured.

For adaptive equipment, to increase the measurement accuracy, a higher number of bursts may be used.

Step 2:

- For conducted measurements on devices with one transmit chain:
 - Connect the power sensor to the transmit port, sample the transmit signal and store the raw data. Use these stored samples in all following steps

For conducted measurements on devices with multiple transmit chains:

- Connect one power sensor to each transmit port for a synchronous measurement on all transmit ports.
- Trigger the power sensors so that they start sampling at the same time. Make sure the time difference between the samples of all sensors is less than 500 ns.
- For each individual sampling point (time domain), sum the coincident power samples of all ports and store them. Use these summed samples as the new stored data set.

Step 3:

Find the start and stop times of each burst in the stored measurement samples.

The start and stop times are defined as the points where the power is at least 30 dB below the highest value of the stored samples in step 2.

In case of insufficient sensitivity of the power sensor (e.g. in case of radiated measurements), the value of 30 dB may need to be reduced appropriately.

Step 4:

Between the start and stop times of each individual burst calculate the RMS power over the burst using the formula below. The start and stop points shall be included. Save these Pburst values, as well as the start and stop times for each burst.

$$P_{burst} = \frac{1}{k} \sum_{n=1}^{k} P_{sample}(n)$$

with k being the total number of samples and n the actual sample number.

Step 5:

The highest of all Pburst values (value A in dBm) will be used for maximum e.i.r.p. calculations.

H Building, Hongfa science and T	echnology Park, Tangtou, Shiyan, E	Bao'an District, Shenzhen, China	
Tel: +86-755-29113252	E-mail:service@poce-cert.com	http://www.poce-cert.com	Page 9 of 40

V1.0

V1.0	SCE	Shenzhen POC	CE Technology Co., Ltd.		Report NO.	: POCE200413042GRW
1 4-	pou.	ACCE	ACE	-4	2	. 90-

Step 6:

- Add the (stated) antenna assembly gain G in dBi of the individual antenna.
- In case of smart antenna systems operating in mode with beamforming (see clause 5.3.2.2.4), add the additional beamforming gain Y in dB.
- If more than one antenna assembly is intended for this power setting, the maximum overall antenna gain (G or G + Y) shall be used.
- The RF Output Power (Pout) shall be calculated using the formula below:

$P_{out} = A + G + Y$

This value, which shall comply with the limit given in clause 4.3.1.2.3 or clause 4.3.2.2.3, shall be recorded in the test report.

Test Results

802.11b mode								
Test c Voltage	onditions Temperature	Channel	Measured power (dBm)	Antenna Gain	EIRP (dBm)	Limit (dBm)	Result	
(V)	(ຕ)			(dBi)	(ubiii)	(ubiii)	40	
	POCE	CH01	14.61	0.00	14.61	POUL	5	
	25	CH07	14.02	0.00	14.02	- 6	E	
	POUL	CH13	14.08	0.00	14.08	POU		
	E SCE	CH01	13.59	0.00	13.59	-	CE	
230	-20	CH07	13.42	0.00	13.42	20.00	Pass	
	CE -OC	CH13	13.56	0.00	13.56	CE F	OCE	
	DE PO	CH01	13.72	0.00	13.72	-CE Y		
	+55	CH07	13.66	0.00	13.66	005	POCK	
	-CE F	CH13	13.47	0.00	13.47	OCE	N	

			802.11g mode	I			
Test c Voltage	onditions Temperature	Channel	Measured power (dBm)	Antenna Gain	EIRP (dBm)	Limit (dBm)	Result
(V) C	(°C)		(ubiii)	(dBi)	(UBIII)	(автт)	CE
: 40	PUU	CH01	12.46	0.00	12.46	- PL	
	25	CH07	12.44	0.00	12.44	CE	OCE
	DE PU	CH13 🦷	12.65	0.00	12.65	OF 1	
	000	CH01	12.07	0.00	12.07	004	POCE
230	-20	CH07	12.15	0.00	12.15	20.00	Pass
	POUL	CH13	12.22	0.00	12.22	PUU	PO
	OCE	CH01	12.11	0.00	12.11	POCE	
	+55	CH07	12.15	0.00	12.15	PO	P
	DOCE	CH13	12.27	0.00	12.27	200	F

			802.11n(H20) mo	ode			
Test c	onditions	P	OCH	Antenna	ELIDD	- Lineit	
Voltage (V)	Temperature (℃)	Channel	Measured power (dBm)	Gain (dBi)	EIRP (dBm)	Limit (dBm)	Result
04	POCE	CH01	11.78	0.00	11.78	POUL	200
OCE	25	CH07	11.52	0.00	11.52	CE.	40
00-	POCE	CH13	11.21	0.00	11.21	POUL	pC
TOCE	CE	CH01	11.01	0.00	11.01	~	E
230	-20	CH07	11.12	0.00	11.12	20.00	Pass
DOG	FOCE	CH13	11.08	0.00	11.08	-	CE .
V -	E PO	CH01	11.13	0.00	11.13	re pu	
PO	+55	CH07	11.03	0.00	11.03		DCE
E.	- 40	CH13	11.24	0.00	11.24	OF T	

Note: 1. Measured Power includes the cable loss.

2. Captured 30 bursts for each mode and recorded the maximum average power.

3.2 Power Spectral Density

Limit

ETSI EN 300 328 V2.2.2 -- Sub-clause 4.3.2.3 : 10 dBm/ MHz.

Test method

Step 1: Connect the UUT to the spectrum analyser and use the following settings:

Start Frequency:	2400 MHz
Stop Frequency:	2483.5 MHz
Resolution BW:	10 kHz
Video BW:	30 kHz
Sweep Points:	>8350; for spectrum analysers not supporting this number of sweep points, the frequency band may be segmented
Detector:	RMS
Trace Mode:	Max Hold
Sweep time: 💦 🔊	10s

Step 2:

For conducted measurements on smart antenna systems using either operating mode 2 or operating mode 3 (see clause 5.3.2.2), repeat the measurement for each of the transmit ports. For each sampling point (frequency domain), add up the coincident power values (in mW) for the different transmit chains and use this as the new data set.

Step 3:

Add up the values for power for all the samples in the file using the formula below.

$$P_{Sum} = \sum_{n=1}^{k} P_{sample}(n)$$

with k being the total number of samples and n the actual sample number

Step 4:

Normalize the individual values for power (in dBm) so that the sum is equal to the RF Output Power (e.i.r.p.) measured in clause 5.4.2 and save the corrected data. The following formulas can be used:

$$C_{Corr} = P_{Sum} - P_{e.i.r.p.}$$

$$P_{Samplecorr}(n) = P_{Sample}(n) - C_{Corr}$$

with n being the actual sample number

Step 5:

Starting from the first sample PSamplecorr(n) (lowest frequency), add up the power (in mW) of the following samples representing a 1 MHz segment and record the results for power and position (i.e. sample #1 to sample #100). This is the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment which shall be recorded.

Step 6: Shift the start point of the samples added up in step 5 by one sample and repeat the procedure in step 5 (i.e. sample #2 to sample #101).

Step 7:

Repeat step 6 until the end of the data set and record the Power Spectral Density values for each of the 1 MHz segments.

From all the recorded results, the highest value is the maximum Power Spectral Density (PSD) for the UUT. This value, which shall comply with the limit given in clause 4.3.2.3.3, shall be recorded in the test report.

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com Shenzhen POCE Technology Co., Ltd.

Report NO.: POCE200413042GRW

Test Results

V1.0

WIFI								
Mode	Channel	Measured value (dBm/MHz)	Limit (dBm/MHz)	Result				
PUU	CH01	2.34	CE PU-	- POU				
802.11b	CH07	2.04	POUL PO	CE DO				
DOCE	CH13	2.03	POCE	DOE				
PO POU	CH01	001.22	PE P	P				
802.11g	CH07	1.28	10.00	Pass				
OCE	CH13	1.25	E DOCE	OCE				
EF	CH01 CH01	0.32	CE FO	POU				
802.11n(H20)	CH07	0.26	POCE	POCE				
OCE JOCE	CH13	0.38	DOCE DOC	E C				

Remark: Duty Cycle(x)= 100% PSD= Reading Value+ 10 log (1/x) + Cable loss + Antenna Gain

3.3 Duty Cycle, Tx-sequence, Tx-gap

<u>Limit</u>

ETSI EN 300 328 V2.2.2 -- Sub-clause 4.3.2.4 :

Non-adaptive FHSS equipment shall comply with the following:

- The Duty Cycle shall be equal to or less than the maximum value declared by the manufacturer.
- The maximum Tx-sequence time shall be 5 ms.
- The minimum Tx-gap time shall be 5 ms.

Test method

Step 1:

Use the same stored measurement samples from the procedure described in clause 5.4.2.2.1.2.
The start and stop times are defined as the points where the power is at least 30 dB below the highest value of the stored samples. In case of insufficient sensitivity of the power sensor (e.g. in case of radiated measurements), the value of 30 dB may need to be reduced appropriately.

Step 2:

Between the saved start and stop times of each individual burst, calculate the TxOn time. Save these TxOn values.

Step 3:

Duty Cycle (DC) is the sum of all TxOn times between the end of the first gap (which is the start of the first burst within the observation period) and the start of the last burst (within this observation period) divided by the observation period. The observation period is defined in clause 4.3.1.3.2 or clause 4.3.2.4.2.

Step 4:

- For FHSS equipment using blacklisting, the TxOn time measured for a single (and active) hopping frequency shall be multiplied by the number of blacklisted frequencies. This value shall be added to the sum calculated in step 3 above. If the number of blacklisted frequencies cannot be determined, the minimum number of hopping frequencies (N) as defined in clause 4.3.1.4.3 shall be assumed.
- The calculated value for Duty Cycle (DC) shall be recorded in the test report. This value shall be equal to or less than the maximum value declared by the manufacturer.

Step 5:

- Use the same stored measurement samples from the procedure described in clause 5.4.2.2.1.2.
- Identify any TxOff time that is equal to or greater than the minimum Tx-gap time as defined in clause 4.3.1.3.3 or clause 4.3.2.4.3. These are the potential valid gap times to be further considered in this procedure.
- Starting from the second identified gap, calculate the time from the start of this gap to the end of the preceding gap. This time is the Tx-sequence time for this transmission. Repeat this procedure until the last identified gap within the observation period is reached.
- A combination of consecutive Tx-sequence times and Tx-gap times followed by a Tx-gap time, which is at least as long as the duration of this combination, may be considered as a single Tx-sequence time and in which case it shall comply with the limits defined in clause 4.3.1.3.3 or clause 4.3.2.4.3.
- It shall be noted in the test report whether the UUT complies with the limits for the maximum Tx-sequence time and minimum Tx-gap time as defined in clause 4.3.1.3.3 or clause 4.3.2.4.3.

<u>Test Results</u>

N/A

Not applicable to this device

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

Shenzhen POCE Technology Co., Ltd.

3.4 Medium Utilization (MU) factor

Limit

V1.0

ETSI EN 300 328 V2.2.2 -- Sub-clause 4.3.2.5 : The maximum Medium Utilization factor for non-adaptive FHSS equipment shall be 10 %.

Test method

Step 1:

Use the same stored measurement samples from the procedure described in clause 5.4.2.2.1.2.

Step 2:

• For each burst calculate the product of (Pburst / 100 mW) and the TxOn time. Pburst is expressed in mW. TxOn time is expressed in ms

Step 3:

Medium Utilization is the sum of all these products divided by the observation period (expressed in ms) which is defined in clause 4.3.1.3.2 or clause 4.3.2.4.2. This value, which shall comply with the limit given in clause 4.3.1.6.3 or clause 4.3.2.5.3, shall be recorded in the test report. If, in case of FHSS equipment, operation without blacklisted frequencies is not possible, the power of the bursts on blacklisted hopping frequencies (for the calculation of the Medium Utilization) is assumed to be equal to the average value of the RMS power of the bursts on all active hopping frequencies.

Test Results

N/A

Not applicable to this device

3.5 Adaptivity (non-FHSS)

Limits

ETSI EN 300 328 V2.2.2 -- Sub-clause 4.3.2.6 : Adaptive non-FHSS using DAA: Sub-clause 4.3.2.6.2

, or Adaptive non-FHSS using LBT: Sub-clause 4.3.2.6.3

Requirements & Limits

LBT based Detect and Avoid is a mechanism by which equipment using wide band modulations other than FHSS, avoids transmissions in a channel in the presence of other transmissions in that channel.

Frame Based Equipment shall comply with the following requirements:

- 1) Before transmission, the equipment shall perform a Clear Channel Assessment (CCA) check using energy detect. The equipment shall observe the operating channel for the duration of the CCA observation time which shall be not less than 18 µs. The channel shall be considered occupied if the energy level in the channel exceeds the threshold given in step 5 below. If the equipment finds the channel to be clear, it may transmit immediately. See figure 2.
- 2) If the equipment finds the channel occupied, it shall not transmit on this channel during the next Frame Period. The equipment is allowed to switch to a non-adaptive mode and to continue transmissions on this channel providing it complies with the requirements applicable to non-adaptive equipment. See clause 4.3.2.6.1. Alternatively, the equipment is also allowed to continue Short Control Signalling Transmissions on this channel providing it complies with the requirements given in clause 4.3.2.6.4.
- 3) The total time during which an equipment has transmissions on a given channel without re-evaluating the availability of that channel, is defined as the Channel Occupancy Time. The Channel Occupancy Time shall be in the range 1 ms to 10 ms followed by an Idle Period of at least 5 % of the Channel Occupancy Time used in the equipment for the current Frame Period.
- 4) An equipment, upon correct reception of a transmission which was intended for this equipment can skip CCA and immediately (see also next paragraph) proceed with the transmission of management and control frames. A consecutive sequence of such transmissions by the equipment without a new CCA shall not exceed the maximum Channel Occupancy Time. For the purpose of multi-cast, the ACK transmissions (associated with the same data packet) of the individual devices are allowed to take place in a sequence.
- 5) The energy detection threshold for the CCA shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the CCA threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) shall not be taken into account. For power levels less than 20 dBm e.i.r.p. the CCA threshold level may be relaxed to:

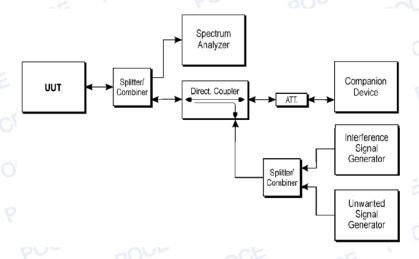
$TL = -70 \text{ dBm/MHz} + 10 \times \log_{10} (100 \text{ mW} / \text{P}_{out})$

6) The equipment shall comply with the requirements defined in step 1 to step 4 in the present clause in the presence of an unwanted CW signal as defined in table 10.

	ed signal mean power n companion device	Unwanted signal frequency (MHz)	Unwanted signal power (dBm)
suffici	ent to maintain the link	2 395 or 2 488,5	-35
	(see note 2)	(see note 1)	(see note 3)
NOTE 1	range 2 400 MHz to 2	442 MHz, while the lowest	operating channels within the t frequency shall be used for 2 MHz to 2 483,5 MHz. See
NOTE 2 NOTE 3	OTE 2: A typical conducted value which can be used in most cases is -50 dBm/MH		

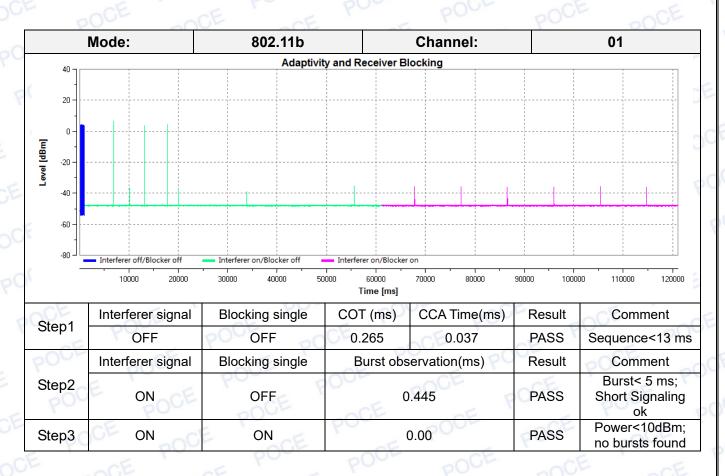
Table 10: Unwanted Signal parameters

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com


/1.0

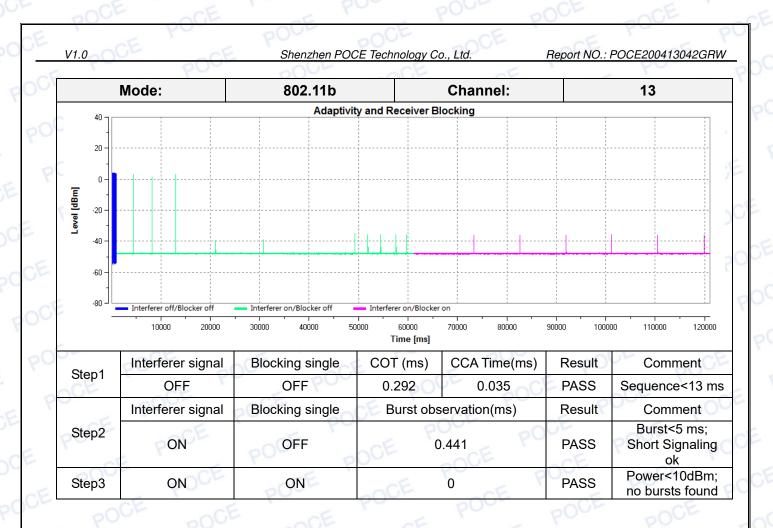
Shenzhen POCE Technology Co., Ltd.

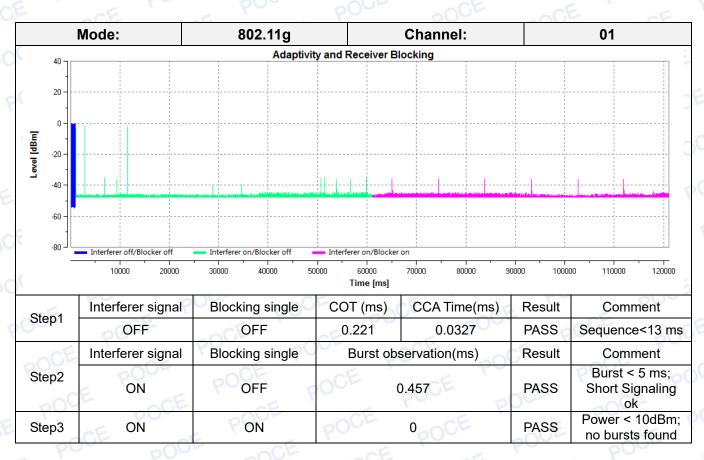
Report NO.: POCE200413042GRW


Test Configuration

V1.0

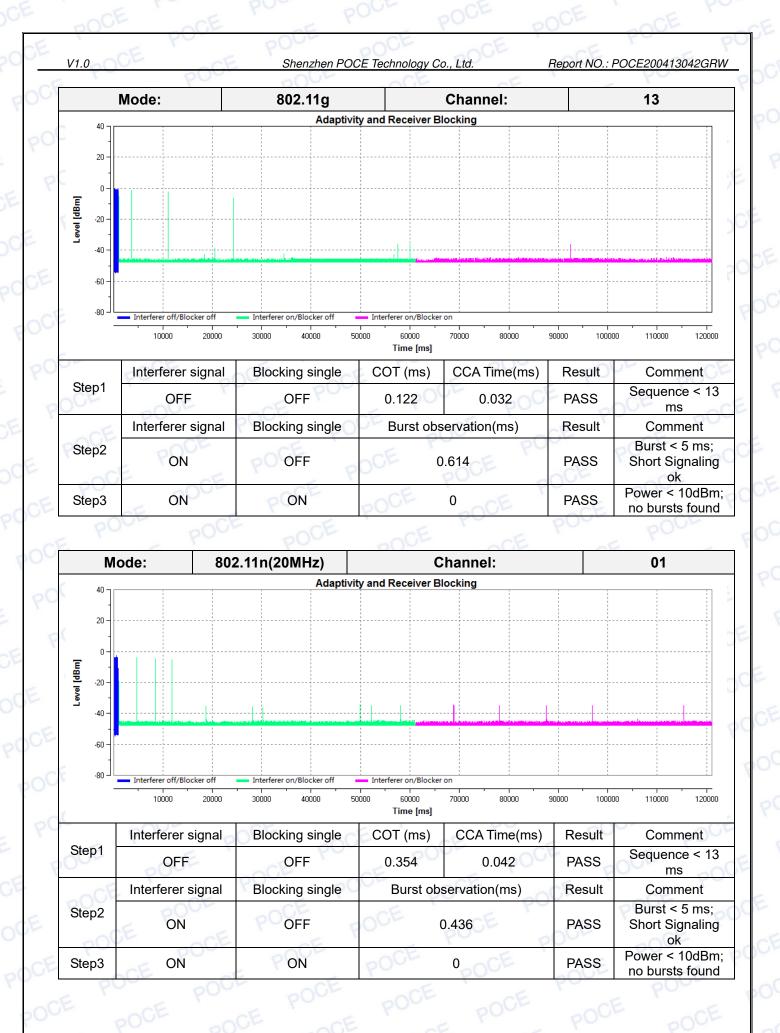
Test Results


Declaration of manufacturer	E	POUL POUL PC
Item E	Values	Requirement
CCA (Clear Channel Assessment) Time	24µs	≥18 μs
q factor	32	4 ~ 32
Maximum Channel Occupancy Time	13ms	(13/32)*q ms



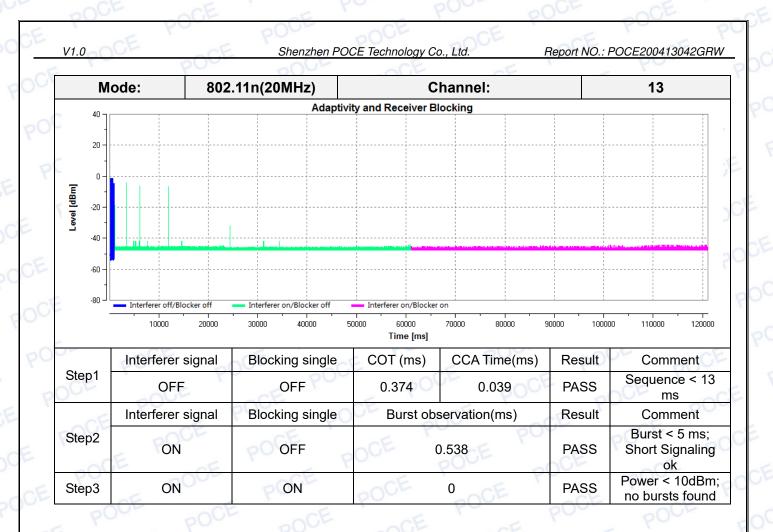
 H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China

 Tel: +86-755-29113252
 E-mail:service@poce-cert.com


 http://www.poce-cert.com

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, ChinaTel: +86-755-29113252E-mail:service@poce-cert.comhttp://www.poce-cert.comhttp://www.poce-cert.com

Page 18 of 40



 H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China

 Tel: +86-755-29113252

 E-mail:service@poce-cert.com

 http://www.poce-cert.com

3.6 Occupied Channel Bandwidth

Limit

V1.0

ETSI EN 300 328 V2.2.2 -- Sub-clause 4.3.2.7 : The Occupied Channel Bandwidth for each hopping frequency shall be within the band given in table 1.

table 1

In addition, for non-adaptive FHSS equipment with e.i.r.p. greater than 10 dBm, the Occupied Channel Bandwidth for every occupied hopping frequency shall be equal to or less than 5 MHz.

Transmit	2 400 MHz to 2 483.5 MHz	1
Receive	2 400 MHz to 2 483.5 MHz	

Test method

Step1:

Connect the UUT to the spectrum analyzer and use the following settings

Centre Frequency:	The centre frequency of the channel under test
Resolution BW:	~ 1% of the span without going below 1 %
Video BW:	3 × RBW
Frequency Span:	2 × Occupied Channel Bandwidth (e.g. 40 MHz for a 20 MHz channel)
Detector Mode:	RMS POOL
Trace Mode:	MaxHold
Sweep time:	1s E POUL POUL

Step 2:

Wait for the trace to stabilize.

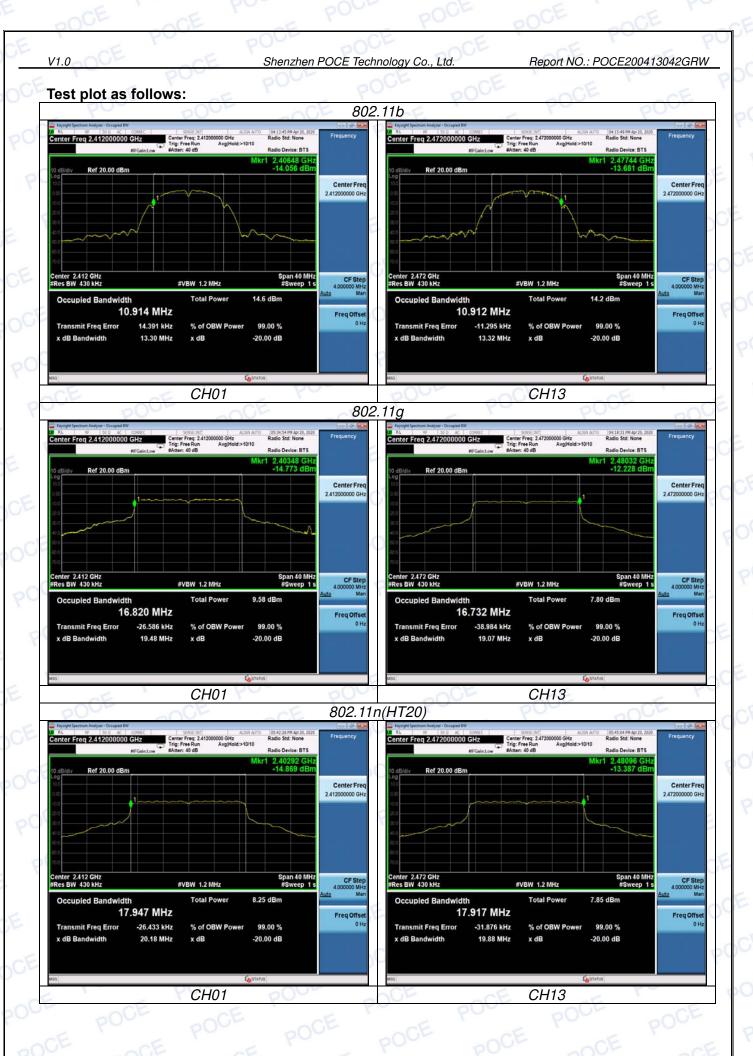
Find the peak value of the trace and place the analyser marker on this peak

Step 3:

Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.

Make sure that the power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals left andright from the power envelope being taken into account by this measurement.

Test Results


Mode	Channel	Occupied Channel Bandwidth (MHz)	f _L (MHz)	f _н (MHz)	Limit	Result
902 11b	CH01	10.914	2406 490	2477.440	CE	60-
802.11b	CH13	10.912	2406.480	2477.440	POUL	POC
000.11	CH01	16.820	2402 490	2490 220	f _L ≧2.4GHz	Pass
802.11g	CH13	16.732	2403.480	2480.320	and f _H ≦2.4835GHz	Pass
902 11 p/UT20)	CH01	17.947	2402.020	2490.060	POU	-
802.11n(HT20)	CH13	17.917	2402.920	2480.960	OCE DO	CE

 H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China

 Tel: +86-755-29113252

 E-mail:service@poce-cert.com

 http://www.poce-cert.com

 H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China

 Tel: +86-755-29113252

 E-mail:service@poce-cert.com

 http://www.poce-cert.com

Page 22 of 40

Chan-han	DOOL	Technology	0-	1 +-
Snenznen	PUCE	Technology	<i>CO</i>	LIC

3.7 Transmitter unwanted emissions in the out-of-band domain

Limit

ETSI EN 300 328 V2.2.2 -- Sub-clause 4.3.2.8 : The transmitter unwanted emissions in the out-of-band domain shall not exceed the values provided by the mask in figure 1.

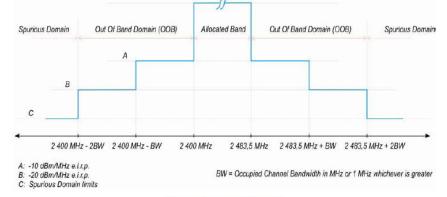


Figure 1: Transmit mask

Test Conditions

These measurements shall only be performed at normal test conditions. For FHSS equipment, the measurements shall be performed during normal operation (hopping). For non-FHSS equipment, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded. The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

Test method

The applicable mask is defined by the measurement results from the tests performed under clause 5.4.7 (Occupied Channel Bandwidth).

The Out-of-band emissions within the different horizontal segments of the mask provided in figure 1 and figure 3 shall be measured using the procedure in step 1 to step 6 below. This method assumes the spectrum analyser is equipped with the Time Domain Power option.

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

Measurement Mode:	Time Domain Power
Centre Frequency:	2 484 MHz
Frequency Span:	0 Hz 2000 000
RBW:	1M DOCE
VBW:	3M
Filter mode:	Channel filter
Trace Mode:	Max Hold
Detector Mode:	RMS

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

Page 23 of 40

0	OCE DE	Shenzhen POCE Technology Co., Ltd.	Report NO.: POCE2	2004130	42GRW
T	Sweep mode:	Single Sweep	CE.	20-	1
	Sweep Points:	Sweep time [µs] / (1 µs) with a maxin	mum of 30 000	90	
	Trigger Mode:	Video	POCE		
	Sweep Time:	> 120 % of the duration of the longer during the measurement of the RF C		- P	

Step 2 (segment 2 483,5 MHz to 2 483,5 MHz + BW):

- The measurement shall be performed and repeated while the trigger level is increased until no triggering takes place.
- For FHSS equipment operating in a normal hopping mode, the different hops will result in signal bursts with different power levels. In this case the burst with the highest power level shall be selected.
- Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power shall be measured using the Time Domain Power function.
- Select RMS power to be measured within the selected window and note the result which is the RMS power within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with the applicable limit provided by the mask.
- Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + BW 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 3 (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2 BW):

Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2 BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW - 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 4 (segment 2 400 MHz - BW to 2 400 MHz):

Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - BW + 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 5 (segment 2 400 MHz - 2 BW to 2 400 MHz - BW):

- Change the centre frequency of the analyser to 2 399,5 MHz BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz 2 BW to 2 400 MHz BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz 2 BW + 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).
- Step 6
 - In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain G in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figure 1 or figure 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.
 - In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain G in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:

- Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain Y in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figure 1 or figure 3.

- Option 2: the limits provided by the mask given in figure 1 or figure 3 shall be reduced by 10 × log10(Ach) and the additional beamforming gain Y in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.

H Building, Hongfa science	ce and Technology Park, Ta	ngtou, Shiyan, B	ao'an District, Shenzhen, China
Tel: +86-755-29113252	E-mail:service@p	oce-cert.com	http://www.poce-cert.com

CE POUL POCE POCE CE FE

Page 25 of 40

NOTE: Ach refers to the number of active transmit chains. It shall be recorded whether the equipment complies with the mask provided in figure 1 or figure 3.

Test Result

Remark:

- 1. We test all modulation type, and recorded the worst case at 802.11b mode.
- 2. The datum recorded below represents the worst emission level in each segment compared with the limit.

Shenzhen POCE Technology Co., Ltd.

POUL	pOC	E -00	E 🗋 wi	EL PO	PO		POCE	÷
			802.11b	CH01				
	Test Conditi		OOB Frequency	Measured Level	Antenna Gain	Results	Limit	Result
BW (MHz)	Voltage (V)	Temperature (℃)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)	Result
E	DCE	OF I	2377.238	-49.51	0.00	-49.51	-20	PASS
10.914	230	25	2392.500	-47.54	0.00	-47.54	-10	PASS
00.914	230	ZOCE	2495.262	-56.67	0.00	-56.67	-10	PASS
	CE	40	2496.262	-57.52	0.00	-57.52	-20	PASS
~	poor	2000	ACE	25		P		D

				802.11b	CH13				
_	BW (MHz)	Test Conditio Voltage (V)	on Temperature (℃)	OOB Frequency (MHz)	Measured Level (dBm)	Antenna Gain (dBi)	Results (dBm)	Limit (dBm)	Result
E	0	CE .	OCE F	2375.884	-55.75	0.00	-55.75	-20	PASS
05	10.912	230	25	2392.500	-56.25	0.00	-56.25	-10	PASS
)	10.912	00230	25	2494.000	-49.08	0.00	-49.08	-10	PASS
20	CE	POCE	CE	2501.308	-52.22	0.00	-52.22	-20	PASS

<u>st Result</u>

V1.0

3.8 Transmitter unwanted emissions in the spurious domain

Limit

ETSI EN 300 328 V2.2.2 -- Sub-clause 4.3.2.9 :

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table 4. In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and e.i.r.p. for emissions above 1 GHz.

Frequency range	Maximum power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 694 MHz	-54 dBm	100 kHz
694 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 GHz	-30 dBm	1 MHz
POCE OCE '	POUL	POCE
<u>is</u>		
- OCE - CE		
urious emissions shall be mer	soured as either:	

Table 1.	Transmitter	limite for	courious	omissions
Table 4.	Transmiller	IIIIIII IIII	spunous	emissions

Test Conditions

The level of spurious emissions shall be measured as, either:

- a) their power in a specified load (conducted spurious emissions) and their effective radiated power when radiated by the cabinet or structure of the equipment (cabinet radiation); or
- b) their effective radiated power when radiated by cabinet and antenna in case of integral antenna equipment with no antenna connectors.

For FHSS equipment, the measurements may be performed when normal hopping is disabled. In this case measurements need to be performed when operating at the lowest and the highest hopping frequency. When this is not possible, the measurement shall be performed during normal operation (hopping).

For non-FHSS equipment, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

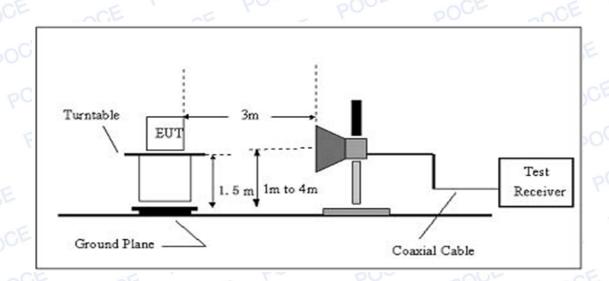
If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then the equipment shall be configured to operate under its worst case situation with respect to spurious emissions.

Test Method

Substitution method was performed to determine the actual spurious emission levels of the EUT. The following test procedure as below:

- Below 1GHz test procedure:
 - 1) On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider.
 - 2) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the test frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.

Shenzhen POCE Technology Co., Ltd.


Report NO.: POCE200413042GRW

- 3) The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the test frequency of the transmitter under test.
- 4) The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
 5) Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6) Remove the transmitter and replace it with a substitution antenna (the antenna should be halfwavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
- 7) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a no radiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8) Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:

where: Pg is the generator output power into the substitution antenna.

above 1GHz test procedure:

Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height.

Test Result

Test Setup

Remark: We test all modulation type, and recorded the worst case at 802.11b mode.

 H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China

 Tel: +86-755-29113252

 E-mail:service@poce-cert.com

 http://www.poce-cert.com

V1.0

Shenzhen POCE Technology Co., Ltd.

Report NO .: POCE200413042GRW

Frequency (MHz)	ANT polarization	Result (dBm)	Limit (dBm)	Margin (dB)	Resul
305.42	E H OCE	-67.45	-36	31.27	PASS
522.30	CE H	-65.44	-36	29.47	PASS
4824.21	H PO	-45.63	-30	15.71	PASS
POUL	POCE D	DCE -	E	P00-	POCE
305.42	V	-66.35	-36 000	30.85	PASS
522.30	V	-64.78	-36	29.68	PASS
4824.21	PV	-48.53	-30	20.51	PASS

Frequency (MHz)	ANT polarization	Result (dBm)	Limit (dBm)	Margin (dB)	Result
301.52	H PO	-66.43	-36	30.54	PASS
546.27	POCH D	-65.77	-36	29.63	PASS
4944.11	OFE	-44.35	-30	15.44	PASS
TACE		POOL- P	DCE - 00	E	- CF
301.52	PV	-62.35	-36	26.13	PASS
546.27	YOCE	-64.26	-36	28.11	PASS
4944.11	V V	-45.68	-30	15.72	PASS

3.9 Receiver spurious emissions

<u>Limit</u>

V1.0

ETSI EN 300 328 V2.2.2 -- Sub-clause 4.3.2.10 :

The receiver spurious emissions shall not exceed the values given in table 5.

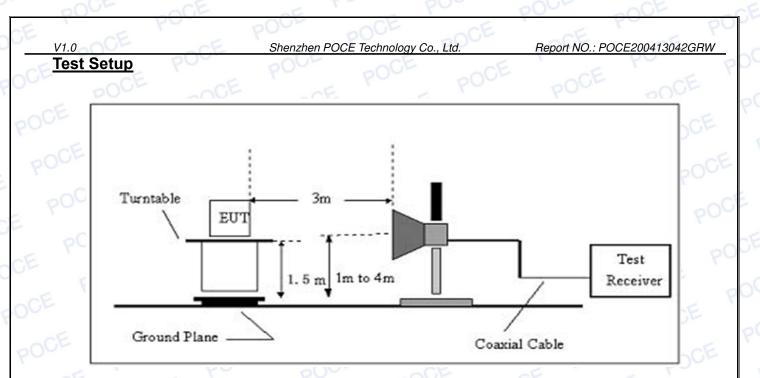
In case of FHSS equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and e.i.r.p. for emissions above 1 GHz.

Table 5: Spurious	emission	limits for	receivers
Table J. Opunous	CIIIISSIOII	1111113 101	ICCCIVCI 3

ä	Frequency range	Maximum power	Bandwidth			
5	30 MHz to 1 GHz	-57 dBm	100 kHz	ľ		
	1 GHz to 12,75 GHz	-47 dBm	1 MHz			

Test Method

Substitution method was performed to determine the actual spurious emission levels of the EUT. The following test procedure as below:


- Below 1GHz test procedure:
 - a) On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider.
 - b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the test frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
 - c) The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the test frequency of the transmitter under test.
 - d) The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
 - e) Repeat step 4 for test frequency with the test antenna polarized horizontally.
 - f) Remove the transmitter and replace it with a substitution antenna (the antenna should be halfwavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
 - g) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a no radiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- h) Repeat step 7 with both antennas horizontally polarized for each test frequency.
- i) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:

ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)

where: Pg is the generator output power into the substitution antenna.

2) above 1GHz test procedure:

Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height.

Test results

Remark: We test all modulation type, and recorded the worst case at 802.11b mode.

Frequency (MHz)	ANT polarization	Result (dBm)	Limit (dBm)	Margin (dB)	Result
165.35	DHOE	-70.26	-57	13.26	PASS
560.98	H	-65.37	-57	8.37	PASS
2656.67	HOUL	-55.34	-47	8.34	PASS
- PO	-p00	FOCE	TCE	- PO	- p(
165.35	OCEH	-71.38	-57	14.38	PASS
560.98	H PO	-67.46	-57	10.46	PASS
2656.67	POUL P	-56.48	-47	9.48	PASS
POCE	POCE	OCE	CE PUC	POCE	DOCE

Test mode : 002	2.11b 2472MHz	Rx	E	40	00
Frequency (MHz)	ANT polarization	Result (dBm)	dBm)	Margin (dB)	Result
177.23	V	-71.45	-57	14.45	PASS
574.36	V pOC	-69.35	-57	12.35	PASS
2425.79	OCEV	-55.64	-47	8.64	PASS
TOCE	PO	POU	POCE	DOCE	OCE
177.23	POV	-72.27	-57	15.27	PASS
574.36	POVE	-68.51	-57	11.51	PASS
2425.79	V	-56.77	-47	9.77	PASS

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

Page 30 of 40

3.10 Receiver Blocking

Limits

ETSI EN 300 328 V2.2.2 -- Sub-clause 4.3.2.11 :

Performance Criteria:

For equipment that supports a PER or FER test to be performed, the minimum performance criterion shall be a PER or FER less than or equal to 10 %.

For equipment that does not support a PER or a FER test to be performed, the minimum performance criterion shall be no loss of the wireless transmission function needed for the intended use of the equipment.

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

	ted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal				
(-133 dBr	n + 10 × log ₁₀ (OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504						
(-139 dBm + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less (see note 3)		2 300 2 330 2 360 2 524 2 584 2 674	-34	CW				
	OCBW is in Hz. In case of radiated measurements (signal from the companion device of using a wanted signal up to P _{min} + 2	annot be determine	ed, a relative test ma	y be performed				
NOTE 3:		using a companion cannot be determine 20 dB where P _{min} is	device and the level ed, a relative test ma s the minimum level	l of the wanted ay be performed of wanted signal				
NOTE 4:	assembly gain. In case of conducte (in-band) antenna assembly gain (0	d measurements, th G). In case of radiate PFD) in front of the	his level has to be co ed measurements, t	The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being				

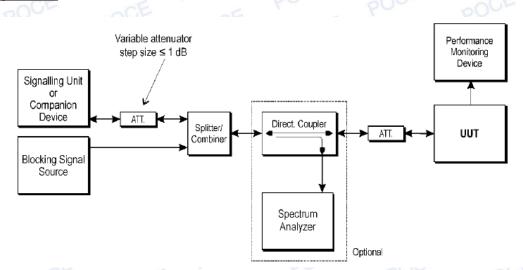
Table 14: Receiver Blocking parameters for Receiver Category 1

	ed signal mean power from mpanion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
	n + 10 × log ₁₀ (OCBW) + 10 dB) Bm + 10 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	CW
	OCBW is in Hz. In case of radiated measuremen wanted signal from the compani may be performed using a want	ion device car	not be determine	ed, a relative test
NOTE 3:	minimum level of wanted signal as defined in clause 4.3.1.12.3 i The level specified is the level a assembly gain. In case of condu for the (in-band) antenna assem	in the absence at the UUT rec ucted measure ably gain (G).	e of any blocking eiver input assun ements, this level In case of radiate	signal. hing a 0 dBi antenna has to be corrected d measurements,
	this level is equivalent to a powe with the UUT being configured/p			

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

Page 31 of 40

V1 0


Shenzhen POCE Technology Co., Ltd.

Report NO.: POCE200413042GRW

	ed signal mean power from ompanion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB) or (-74 dBm + 20 dB) whichever is less (see note 2)		dBm + 20 dB) whichever is less 2 504	-34	CW
	OCBW is in Hz. In case of radiated measuremer wanted signal from the compani may be performed using a want minimum level of wanted signal criteria as defined in clause 4.3.	ion device cann ed signal up to required to mee	iot be determine P _{min} + 30 dB wh et the minimum p	d, a relative test ere P _{min} is the performance

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Test Configuration

Test Procedure

Step 1:

For non-FHSS equipment, the UUT shall be set to the lowest operating channel on which the blocking test has to be performed (see clause 5.4.11.1).

Step 2:

The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.

Step 3:

- With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device using the test setup shown in figure 6.
- Unless the option provided in note 2 of the applicable table referred to in clause 5.4.11.2.1 is used, the level of the wanted signal shall be set to the value provided in the table corresponding to the receiver category and type of equipment. The test procedure defined in clause 5.4.2, and more in particular clause 5.4.2.2.1.2, can be used to measure the (conducted) level of the wanted signal however no correction shall be made for antenna gain of the companion device (step 6 in clause 5.4.2.2.1.2 shall be ignored). This level may be measured directly at the output of the companion device and a correction is made for the coupling loss into the UUT.
- When the option provided in note 2 of the applicable table referred to in clause 5.4.11.2.1 is used, the attenuation of the variable attenuator shall be increased in 1 dB steps to a value at which the minimum performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still met.

Shenzhen POCE Technology Co., Ltd.

Report NO.: POCE200413042GRW

The resulting level for the wanted signal at the input of the UUT is Pmin. This signal level (Pmin) is increased by the value provided in note 2 of the applicable table corresponding to the receiver category and type of equipment.

Step 4:

- The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment. Where the manufacturer has declared the actual antenna gain for each of the applicable blocking frequencies (see clause 5.4.1 m) ii)) this blocking level shall be adjusted for the difference between the in-band antenna assembly gain (G) and the actual antenna gain for the blocking frequency being tested. See also note 5 in table 6, note 4 in table 7 and note 4 in table 8 or note 5 in table 14, note 4 in table 15 and note 4 in table 16. Where the actual antenna gains at the blocking frequencies have not been declared, then the antenna gain at the blocking frequencies shall be assumed identical to the in-band antenna gain.
- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is met then proceed to step 6.

Step 5:

- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is not met, step 3 and step 4 shall be repeated after that the frequency of the blocking signal set in step 2 has been increased with a value equal to the occupied channel bandwidth except: For the blocking frequency 2 380 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be increased by 3 dB. For the blocking frequency offset is more than 7 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this decreased by 3 dB. For the blocking frequency offset is more than 7 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be decreased by 3 dB.
- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is not met, step 3 and step 4 shall be repeated after that the frequency of the blocking signal set in step 2 has been decreased with a value equal to the occupied channel bandwidth except: For the blocking frequency 2 380 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be less than or equal to 10 MHz. If this frequency 2 503,5 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be
- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still not met, the UUT fails to comply with the Receiver Blocking requirement and step 6 and step 7 are no longer required.
- It shall be recorded in the test report whether the shift of blocking frequencies as described in the present step was used.

Step 6:

 Repeat step 4 and step 5 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment.

Step 7:

For non-FHSS equipment, repeat step 2 to step 6 with the UUT operating at the highest operating channel on which the blocking test has to be performed (see clause 5.4.11.1).

Step 8:

It shall be assessed and recorded in the test report whether the UUT complies with the Receiver Blocking requirement.

/1.0

V1.0

Shenzhen POCE Technology Co., Ltd.

Report NO.: POCE200413042GRW

Test result

		N	/IFI				
Test Mode	802.11b	POCE	TOCE	CE	FO	PUU	
Wanted signal Mean power From companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal Power (dBm)	Type of blocking signal	PER (%)	PER (%) Limit	Result	5
DOCE	2380.0	-34	CW	3.05	≤10	Pass	
-68	2503.5	0000-34	CEVV	2.46	= 10	Pass	3
-08 CE	2300.0	-34	CW	0.51	≦10	Pass	
E SEE	2583.5	20-54	POCVV	0.39		Pass	

Test Mode	802.11g	TOCE	CE	po	POU	PO
Wanted signal Mean power From companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal Power (dBm)	Type of blocking signal	PER (%)	PER (%) Limit	Result
-CE	2380.0	-34	CW	1.05	≦10	Pass
69	2503.5	-34	CW	2.44	PC=10	Pass
-68	2300.0	24	CW	0.84	≦10	Pass
	2583.5	-34	CVVE	0.36	10	Pass

Test Mode	802.11n20					
Wanted signal Mean power From companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal Power (dBm)	Type of blocking signal	PER (%)	PER (%) Limit	Result
E	2380.0	24	CW	065	< 10	Pass
-68	2503.5	-34	CVV	1.32	≦10	Pass
DCE -DO	2300.0	24	CIN	2.10	≦10	Pass
	2583.5	-34	CW	1.21	=10	Pass

Remark:

1 According to the Power measurement the device belongs to Receiver category 1. 2 (-139 dBm + 10 ×log10(OCBW)) or -68 dBm whichever is less

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

Page 35 of 40

5 PHOTOGRAPHS OF EUT

Please refer to the report NO .: POCE200413040GRW

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, ChinaTel: +86-755-29113252E-mail:service@poce-cert.comhttp://www.poce-cert.comhttp://www.poce-cert.com

P

6 ANNEX E

Information as required by EN 300 328 V2.2.2, clause 5.4.1

In accordance with EN 300 328, clause 5.4.1, the following information is provided by the supplier.

- The type of modulation used by the equipment:
 - FHSS
 - Other forms of modulation
- b) In case of FHSS modulation:
 - In case of non-Adaptive Frequency Hopping equipment:
 - The number of Hopping Frequencies:
 - In case of Adaptive Frequency Hopping Equipment:
 - The maximum number of Hopping Frequencies:
 - The minimum number of Hopping Frequencies:
 - The (average) Dwell Time:
- Adaptive / non-adaptive equipment:
 - Non-adaptive Equipment
 - Adaptive Equipment without the possibility to switch to a non-adaptive mode
 - Adaptive Equipment which can also operate in a non-adaptive mode
- In case of adaptive equipment: d)
 - The Channel Occupancy Time implemented by the equipment: 13ms
 - The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment
 - The equipment can switch dynamically between Frame Based and Load Based equipment
 - The CCA time implemented by the equipment: 15
 - The equipment has implemented an non-LBT based DAA mechanism
 - The equipment can operate in more than one adaptive mode
- e) In case of non-adaptive Equipment:
 - The maximum RF Output Power (e.i.r.p.): dBm %
 - The maximum (corresponding) Duty Cycle:
 - Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):
 - The worst case operational mode for each of the following tests:
 - **RF Output Power** 802.11b 1Mbps, 802.11g 6Mbps, 802.11(HT20) 6.5Mbps
 - Power Spectral Density 802.11b 1Mbps, 802.11g 6Mbps, 802.11(HT20) 6.5Mbps
 - Duty cycle, Tx-Sequence, Tx-gap N/A
 - Dwell time, Minimum Frequency Occupation & Hopping Sequence (only for FHSS equipment) N/A
 - Hopping Frequency Separation (only for FHSS equipment) N/A
 - Medium Utilisation N/A
 - Adaptivity

H Building, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com

V	1.0	Shenzhen POCE Technology Co., Ltd. Report NO.: POCE200413042GRW
2F	Ţ	802.11b 1Mbps, 802.11g 6Mbps, 802.11(HT20) 6.5Mbps
	٠	Occupied Channel Bandwidth
		802.11b 1Mbps, 802.11g 6Mbps, 802.11(HT20) 6.5Mbps
	•	Transmitter unwanted emissions in the OOB domain
		802.11b 1Mbps, 802.11g 6Mbps, 802.11(HT20) 6.5Mbps
		Transmitter unwanted emissions in the spurious domain
		802.11b 1Mbps
	00	Receiver spurious emissions
		802.11b 1Mbps
	-	Receiver Blocking
	Pe	802.11b 1Mbps
۲ מ'	\ т	
g))	The different transmit operating modes (tick all that apply):
		Operating mode 1: Single Antenna Equipment
		Equipment with only 1 antenna
		Equipment with 2 diversity antennas but only 1 antenna active at any moment in time
		Smart Antenna Systems with 2 or more antennas, but operating in a (legacy) mode
		where only 1 antenna is used. (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna
		systems)
		Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming
		Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)
		High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1
		High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2
		Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
		Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)
		High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1
		□ High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2
(h)) II	n case of Smart Antenna Systems:
000	, •	The number of Receive chains:
	cE	The number of Transmit chains:
	0-	Symmetrical power distribution
		Asymmetrical power distribution
		case of beam forming, the maximum (additional) beam forming gain:
.,		PU- OUF CK
1)	P	Operating Frequency Range(s) of the equipment:
	•	Operating Frequency Range 1: 2412MHz to2472MHz
	٠	Operating Frequency Range 2: MHz to MHz
	Ν	IOTE: Add more lines if more Frequency Ranges are supported.
j)	C	Dccupied Channel Bandwidth(s):
-	2.	Occupied Channel Bandwidth 1: 20MHz
	•	Occupied Channel Bandwidth 2: MHz
k)	-	Type of Equipment (stand-alone, combined, plug-in radio device, etc.):
PC)	0	
		Stand-alone
		Combined Equipment (Equipment where the radio part is fully integrated within another type
		of equipment)
		Plug-in radio device (Equipment intended for a variety of host systems)
F	T	Other OCE
M I)	Ţ	The extreme operating conditions that apply to the equipment:
		Operating temperature range: -20° C to +55° C
		Operating voltage range: 207V to 253V
		Details provided are for the: Stand-alone equipment
		Combined (or host) equipment
	Build	ling, Hongfa science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China

V1.0	SCE	Shenzhen POCE Technology Co., Ltd.	Report NO.: POCE200413042GRW
E	PUU	Test jig	CE PUT

- m) The intended combination(s) of the radio equipment power settings and one or more antenna assemblies and their corresponding e.i.r.p levels:
 - Antenna Type:
 - PCB Antenna
 - Antenna Gain: 0 dBi

If applicable, additional beamforming gain (excluding basic antenna gain):

- No temporary RF connector provided
- Dedicated Antennas (equipment with antenna connector)
 - Single power level with corresponding antenna(s)
 - Multiple power settings and corresponding antenna(s)

Number of different Power Levels:

Power Level 1:	E	dBm
Power Level 2:	PU.	dBm 🔊 🔿
Power Level 3:	OF N	dBm

 For each of the Power Levels, provide the intended antenna assemblies, their corresponding gains (G) and the resulting e.i.r.p. levels also taking into account the beamforming gain (Y) if applicable

Power Level 1: dBm

Number of antenna assemblies provided for this power level:

Assen #	Assembly Gain # (dBi)		e.i.r.p. (dBm)	Part number or model name			
٤ 1		E			POUL	POCE	
2	PU	F	OCF	POCE	OCE	-F	
3	~	OCE	CE		PUU	POUL	
4	Y	-	POU	POUL	DOCE		

Power Level 2: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part	number or mo	odel name
P1	POC	D D	CE	OCE	-E F
2	L L	CE	2E	PUS	POUL
3	PL PL		POUL	DOCE	OCE
4 00	CH I	OCE	ACE	1-	PUC

Power Level 3: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name		
1	POUL	pO	E DOCE DCE		
2	-00	E	CE FO POUL		
3	E 90	P	POCE DOCE		
4200	0	CE	OCE OF FO		

dP

V1.0		nzhen POCE Techno		Report NO.: POCE200413042GRW
o)	The nominal voltages of the stand	d-alone radio ec	uipment or the	e nominal voltages of the combined
	(host) equipment or test jig in cas	e of plug-in dev	vices: PU	
	Details provided are for the:	tand-alone equi	pment	
		ombined (or hos	st) equipment	
		est jig		
	Supply Voltage AC mains Sta	te AC voltage 2	30V/50Hz	
		e DC voltage	VOE	
	In case of DC, indicat		wer source	
	Internal Power S			
	External Power	Supply or AC/D	C adapter	
	Battery	POU		
	Other: DC 5V fro			
p)	Describe the test modes available	e which can fac	ilitate testing:	
q)	The equipment type (e.g. Bluetoc	oth®, IEEE 802.	11™ [i.3], prop	orietary, etc.):
	IEEE 802.11™ [i.3]			
r)	Geo-location capability supported	by the equipm	ent:	
	Yes	POCE		
	TT AL	etermined by the	equipment as	s defined in clause 4.3.1.13.2 or
	clause 4.3.2.12.2 is not acce			- CE - P(
		E	. PUU	
د)		ce criteria that	apply to the or	quipment (see clause 4.3.1.12.3 or
s)	- OUF	ice chiena indi		quipment (see blause 4.5.1.12.5 01
	clause 4.3.2.11.3):			

OCE

N/A

1

TEST REPORT

Applicant		: Allterco Robotics	
Address	436 ³⁶	: 103 Cherni Vrah Blvd, Sofia 1407, Bulgaria	
Report on the	submitted s	mple said to be:	

Sample name : LED Lamps **Trade Name** N/A 1 Model Shelly Vintage A60, Shelly Vintage ST64 Manufacturer Allterco Robotics Address 103 Cherni Vrah Blvd, Sofia 1407, Bulgaria • **Test conclusion** Based on the performed tests on submitted samples, the results of Lead, . Mercury, Cadmium, Hexavalent chromium, Polybrominated biphenyls (PBBs). Polybrominated diphenyl ethers (PBDEs), Bis (2-ethylhexyl) phthalate (DEHP), Benzyl butyl phthalate (BBP), Dibutyl phthalate (DBP), Di Iso Butyl Ortho Phthalate (DIBP) comply with the limits as set by RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU. **Testing period** Apr. 12, 2020 to Apr. 18, 2020 Date of report Apr. 18, 2020

Testing Requested:	Results
Selected test(s) as requested by client	Pass

Prepared by:

Examine By :

Matilda

Matilda

Calvin Chen Calvin Chen

Testing method:

1. With reference to IEC 62321-1:2013, review was performed for the samples disjointed from the submitted articles submitted by the Applicant

Tests were performed for the samples indicated by the photos in the report with test methods reference to IEC 62321-1:2013, Procedures for the determination of Levels of Six regulated Substances in Electrotechnical Products

- (1) With reference to IEC 62321-3-1:2013, Screening by XRF spectrometry
- (2) Wet Chemical Test Method
- a. With reference to IEC 62321-5:2013, Determination of Lead &Cadmium by ICP-OES or AAS
- b. With reference to IEC 62321-4:2013, Determination of Mercury by ICP-OES
- c. With reference to IEC 62321-7-1:2015, Determination of Hexavalent Chromium by Spot or Colorimetic Method
- d. With reference to IEC 62321-6:2015, Determination of PBBs and PBDEs by GC-MS
- e. With reference to IEC 62321-8:2017, Determination of DEHP, DIBP, DBP and BBP by GC-MS

Note:

The test results are related only to the tested items. The report shall note be reproduced excpt in full without the written approval of the testing laboratory.

Part No.	Part Description	Restricted	Results of	Result of wet	Conclusion	Sample submittee
-		Substance	EDXRF	Chemical Testing	on RoHS	Resubmitted
CE		POL	,L D	(2mg/kg)	CE '	Date
1	Glass	Pb	BL	PC	Comply 🦿	Apr. 18, 2020
OCE		Cd 🖓	BL	POCE	Comply	
00		Hg	BL	SE F	Comply	
TOCE		Cr(VI)	BL	POUL	Comply	
PUC		Br	BLE	TOF	Comply	
200		DEHP	IN	ND	Comply	
PU		BBP	INOC	ND	Comply	
20		DBP	IN	ND	Comply	
= +		DIBP	IN	OF ND	Comply	
2	Tungsten filament	Pb	S BL	- POU	Comply	Apr. 18, 2020
CE	PUC	Cd	BL	OCE -	Comply	DE PU
UF I		Hg	BL	PL PL	Comply	
OCE		Cr(VI)	BL	POCE	Comply	
00-		EBr	- CF		000	
-CE		DEHP	200	DOCE	OCE	
pue		BBP	TOE		PU	
		DBP	POUL	POCE	DOCE	
PU		DIBP	-00	E	40	
3 🛁	White wire	Pb	BL	POUL	Comply	Apr. 18, 2020
EF		Cd	BL	CE - C	Comply	PU-
L		Hg	E BL	POL	Comply	
CF.		Cr(VI)	BL O	OCE .	Comply	
02		Br	BL	PL PL	Comply	
OCE		DEHP	IN	ND	Comply	
00-		BBP	IN	ND	Comply	
005		DBP	IN	ND	Comply	
PUC		DIBP	INCE	ND	Comply	
4	Black casing	Pb	BL	POUL	Comply	Apr. 18, 2020
40	POUL	Cd	BLOC	E	Comply	POUL
-		Hg	BL	POUL	Comply	
EY		Cr(VI)	BL	CE	Comply	
		Br	E BL	POL	Comply	
CE		DEHP	IN	ND	Comply	
JO		BBP	IN	ND PC	Comply	
OCE		DBP ?	IN	ND	Comply	
2005		DIBP	INC	ND	Comply	
POCI	POCE	POCE	ROINE		Comply	POCE

H Building, Hongfa Science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Web: http://www.poce-cert.com Tel: 86-755-29113252 E-mail:service@poce-cert.com

Part No.	Part Description	Restricted	Results of	Result of wet	Conclusion	Sample submitted/
N. N.	PUC	Substance	EDXRF	Chemical Testing	on RoHS	Resubmitted
	DOCE DOCE		F F	(2mg/kg)	PC	Date
5	Electrolytic capacitor	Pb	BL	OCE -	Comply	Apr. 18, 2020
	POUL DOC	Cd	BL	PL PL	Comply	000 000
OCE	THE POI	Hg 📍	BL	POCE	Comply	SCE
00	POUL	Cr(VI)	BL	SE F	Comply	POUL DI
OCE	CE FO	Br	BL	POCE	Comply	OCE
puc	POUL	DEHP	INE	ND	Comply	POUL
-00	E	BBP	IN	ND	Comply	OCE
40.	POUL	DBP	IN	ND	Comply	POUL
2	DCE	DIBP	IN	ND	Comply	E
6	Inductor	Pb	BL	CE -	Comply	Apr. 18, 2020
-	DOCE OCE	Cd	C BL	- POU	Comply	CE -OCF
-E	PUU	Hg	BL	OCE -	Comply	DE PUE
04	POCE	Cr(VI)	BL	~ _ PC	Comply	OUL DO
OCE	PUC	Br	BL	POCE	Comply	CE PO
00-	POCE	DEHP	IN	ND	Comply	POUL
ACK.	PC PC	BBP	IN	ND	Comply	CE F
puu	POCE	DBP	INCE	ND	Comply	POUL
	E	DIBP	IN	ND	Comply	CE
7	IC	Pb	BL	E AE	Comply	Apr. 18, 2020
	DOE	Cd	BL	POUL	Comply	E
- P	POUL	Hg	BL	CE	Comply	- PUU
	DOCE DCE	Cr(VI)	BL	POL	Comply	JCE JOCK
~F	POUL	Br	BL 0	OCE	Comply	PUC PUC
5	POCE		IN	ND PC	Comply	DOCE -0
-CF	POUL POUL	BBP ?	IN	ND	Comply	OF PU
000	POCE	DBP	IN	ND	Comply	POUL
	PL PL	DIBP	IN	ND	Comply	DE P
8	Diode	Pb	BLOE		Comply	Apr. 18, 2020
0	E	Cd	BL	POCE	Comply	
PU	POUL	Hg	BLOC	E	Comply	POUL
	OCE	Cr(VI)	BL	POCE	Comply	E SCE
E P	POUL	Br	BL	CE	Comply	POUL
5	DOCE	DEHP		ND POU	Comply	DCE
2E	POUL POUL	BBP		ND	Comply	- POU
0F	POCE			ND PC	Comply	DOCE
2E	POL			ND	Comply	PU
004	DOCE	DIDF			Comply	POCE

Part No.	Part Description	Restricted	Results of	Result of wet	Conclusion	Sample submitted/
EF	POUL	Substance	EDXRF	Chemical Testing	on RoHS	Resubmitted
-	OCE OCE		E PU	(2mg/kg)	pO	Date
9	White glue	Pb	BL	OCE -	Comply	Apr. 18, 2020
04	POCE DOC	Cd	BL	- PC	Comply	001 00
OCE	T POS	Hg P	BL	POCE	Comply	SCE TO
00	POUL	Cr(VI)	BL	-E F	Comply	POUL
OCE	CE PO	Br	BL	POCE	Comply	OCE
puc	POUL	DEHP	INE	ND	Comply	POUL
200	E	BBP	IN	ND	Comply	OCE
40	POUL	DBP	INC	ND	Comply	POUL
2	DCE	DIBP	IN	ND	Comply	E SOCE
10	Tin solder	Pb	BL	CE - C	Comply	Apr. 18, 2020
-	DOCE DOCE	Cd	BL	- POU	Comply	CE
CE	DE PUS	Hg	BL	OCE -	Comply	CE FU
	POCE DOC	Cr(VI)	BL	PL	Comply	000 00
OCE	CE PO	Br P		POCE	OCE	CE PC
00	POUL	DEHP	ACE	DE I	-	POUL
-OCF	E OF PO	BBP	200	POCE	DOCE	OCE
P0-	POUL	DBP	OCE	TOF	10	POUL
-0	DE DE T	DIBP	PUC	POUL	POCE	OCE
11	Silver metal	Pb	BL	E - CE	Comply	Apr. 18, 2020
D	OCE	Cd	BL	POUL	Comply	E DOCE
EF	POU	Hg	BL	CE - OC	Comply	OF PU
	DOCE DOCE	Cr(VI)	BL	- PUC	Comply	200 200
CE	DE PUE	Br	- 0	OCE .	CE-	CF. FO
)0-	POCE DOC	DEHP	CE '	PL PL	- 1	pour po
OCE	CE FO	BBP ?		POCE	OCE	OCE
200	POUL DO	DBP	OCE	<u>a</u> F		POUL
2005	CE	DIBP	PU-	POUL	DOCE	OCE
12	SMD capacitor	Pb	BLCE	SCE	Comply	Apr. 18, 2020
20	OF NOCE	Cd	BL	POUL	Comply	DOCE
40	E PUU	Hg	BLOC	E ACE	Comply	E PU-
D	OCE DOCE	Cr(VI)	BL	POUL	Comply	1 ^L DOCE
E	DE PUE	Br	BL OC	CE - CC	Comply	CE PU
	POCE	DEHP	EIN	ND POO	Comply	000 000
CE	OF PU	BBP	IN C	ND	Comply	CE FU
	POUL DOC	DBP	IN	ND	Comply	pour po
OCE	OF FU	DIBP 🦓	IN	ND	Comply	OCE

Part No.	Part Description	Restricted Substance	Results of EDXRF	Result of wet Chemical Testing	Conclusion on RoHS	Sample submitted/ Resubmitted
	OCE OCE	Callotanoo		(2mg/kg)	DC	Date
13	SMD resistor	Pb	BL	OCE -	Comply	Apr. 18, 2020
	POCE	Cd	BL	PU PU	Comply	000 200
CE	DE POS	Hg 💎	BL	DOCE	Comply	CE FU
)0	POUL	Cr(VI)	BL	THE P	Comply	POUL DI
OCE	CE FC	Br	BL	POCE	Comply	OCE
00	POUL	DEHP	INE	ND	Comply	POU
200	E	BBP	IN	ND	Comply	OCE
40	POUL	DBP	INC	ND	Comply	PUC
0	DCE	DIBP	IN	ND	Comply	FOCE
14	Crystal oscillator	Pb	BL	CE - CC	Comply	Apr. 18, 2020
	DOCE DOCE	Cd	BL	- P00	Comply	CE DOCE
E	DE POS	Hg	BL	OCE -	Comply	OF FO
	POCE	Cr(VI)	BL	PL	Comply	000 000
CE	CE PO	Br P	BL	POCE	Comply	CE
,~	POUL	DEHP	IN	ND	Comply	POUL
-OCF	CE FL	BBP	IN	ND	Comply	OCE
	POUL	DBP	INCE	ND	Comply	POU
20(DE DE	DIBP	IN	ND	Comply	TOCE
15	PCB	Pb	BL	E OCE	Comply	Apr. 18, 2020
D	DCE	Cd	BL	_ <u>p</u> 001	Comply	POCE
	PUC	Hg	BL	CE -	Comply	CE PO
	POCE DOCE	Cr(VI)	BL	- PUS	Comply	DOL DOCH
E	OF PO	Br	IN 👳	PBBs=ND	Comply	CE
	POUL DOC	E	NCE '	PBDEs=ND		p001 p00
CE	CE PU	DEHP	IN	ND	Comply	OCE
-	POUL DO	BBP	IN	ND	Comply	PUC
200	E	DBP	IN	ND	Comply	OCE
~	PUU	DIBP	INCE	ND	Comply	PUS

POCE

Remark:

- (1) (a) It is the result on total Br while test item on restricted is PBBs\PBDEs. It is the result on total Cr6+ while test item on restricted substances is Cr⁶⁺.
 - (b) Results are obtained by EDXRF for primary screening ,and further chemical testing by ICP(for Cd, Pb, Hg), UV-VIS(for Cr⁶⁺) and GC\MS (for PBBs, PBDEs) is recommended to be performed , if the concentration exceeds the below warning value according to IEC62321(unit: mg\kg)

Element	Polymer	Metal	Composite Materals
Cd	BL≤ (70-3 σ) <x<(130+3)="" td="" σ="" ≤ol<=""><td>BL≤ (70-3 ♂) <x<(130+3)="" td="" ≤ol<="" ♂=""><td>LOD<x<(150+3 td="" ≤ol<="" ♂)=""></x<(150+3></td></x<(130+3></td></x<(130+3>	BL≤ (70-3 ♂) <x<(130+3)="" td="" ≤ol<="" ♂=""><td>LOD<x<(150+3 td="" ≤ol<="" ♂)=""></x<(150+3></td></x<(130+3>	LOD <x<(150+3 td="" ≤ol<="" ♂)=""></x<(150+3>
PbpO	BL≤ (700-3 σ) <x<(1300+3)="" td="" σ="" ≤ol<=""><td>BL≤ (700-3 σ) <x<(1300+3)="" σ="" ≤<br="">OL</x<(1300+3></td><td>BL≤ (500-3 σ) <x<(1500+3 σ) ≤OL</x<(1500+3 </td></x<(1300+3>	BL≤ (700-3 σ) <x<(1300+3)="" σ="" ≤<br="">OL</x<(1300+3>	BL≤ (500-3 σ) <x<(1500+3 σ) ≤OL</x<(1500+3
Hg	BL≤ (700-3 σ) <x<(1300+3)="" td="" σ="" ≤ol<=""><td>BL≤ (700-3 σ) <x<(1300+3)="" σ="" ≤<br="">OL</x<(1300+3></td><td>BL≤ (500-3 σ) <x<(1500+3 σ) ≤OL</x<(1500+3 </td></x<(1300+3>	BL≤ (700-3 σ) <x<(1300+3)="" σ="" ≤<br="">OL</x<(1300+3>	BL≤ (500-3 σ) <x<(1500+3 σ) ≤OL</x<(1500+3
Br	BL≪ (300-3 σ) <x< td=""><td>E DOCE DOCE</td><td>BL≪ (250-3 σ) <x< td=""></x<></td></x<>	E DOCE DOCE	BL≪ (250-3 σ) <x< td=""></x<>
Cr	BL≤ (700-3 σ) <x< td=""><td>BL≤ (700-3 σ) <x< td=""><td>BL≤ (500-3 σ) <x< td=""></x<></td></x<></td></x<>	BL≤ (700-3 σ) <x< td=""><td>BL≤ (500-3 σ) <x< td=""></x<></td></x<>	BL≤ (500-3 σ) <x< td=""></x<>

(c)BL=Below Limit, OL=Over Limit, IN=Inconclusive, LOD=Limit of Detection,-=Not Regulated,

- Negative = A negative test result indicated above positive observation was not found at the time of testing. When the spot-test showed a negative result, the boiling-water-extraction procedure shall be used to verify the result.
 - (#1) = As claimed by the declaration submitted by the client, the Lead content of the components is coming from the constituent of ceramic part of the electronic component only. According to EU RoHS Directive, Lead in electronic ceramic parts of this component can be exempted.
- (d)The XRF screening test for RoHS elements-The reading may be different to the actual content in the sample be of non-uniformity composition,
- (2) (a) mg\kg=ppm=0.0001%, ND=Not Detected{<MDL)),

(b)Unit and Method Detection Limit(MDL)in wet chemical test

Units	MDL	EU RoHS Limit	
mg/kg	2 0	1000	
mg/kg	2	100 000	
mg/kg	2000	1000	
maller	0.02 mg/50 cm ² (Metal)	1000 00	
mg/kg	2 200	1000	
mg/kg	SES	1000	
mg/kg	P00 5 P0	1000	
mg/kg	5	1000	
mg/kg	5 P	1000	
mg/kg	5	1000	
mg/kg	5	1000 0000	
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg 2 mg/kg 2 mg/kg 2 mg/kg 2 mg/kg 0.02 mg/50 cm²(Metal) mg/kg 5 mg/kg 5	

- (c) According to IEC 62321, result on Cr for metal sample is shown as Positive\Negative, Negative=Absence of Cr6+ costing, Positive=Prosence of Cr 6+ coating.
- (d) ▲As declared by the client the materials fall into exemption items according to RoHS Directive 2011\65\EU recasting 2002\95\EC

H Building, Hongfa Science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Web: http://www.poce-cert.com Tel: 86-755-29113252 E-mail:service@poce-cert.com

Photograph of sample

POCE authenticate the photo on original report only

Photo 1

Photo 2

H Building, Hongfa Science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Web: http://www.poce-cert.com Tel: 86-755-29113252 E-mail:service@poce-cert.com



Photo 3

Photo 4

H Building, Hongfa Science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Web: http://www.poce-cert.com Tel: 86-755-29113252 E-mail:service@poce-cert.com

Page 9 of 11

Photo 5



Photo 6

H Building, Hongfa Science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Web: http://www.poce-cert.com Tel: 86-755-29113252 E-mail:service@poce-cert.com

Page 10 of 11

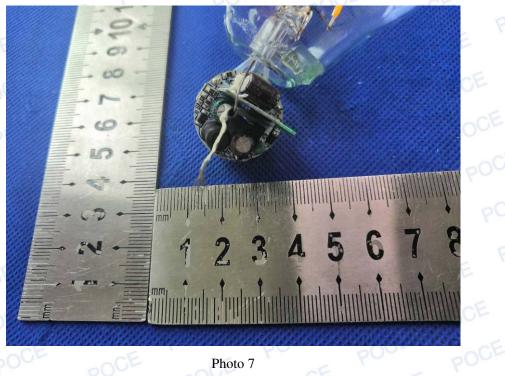


Photo 7

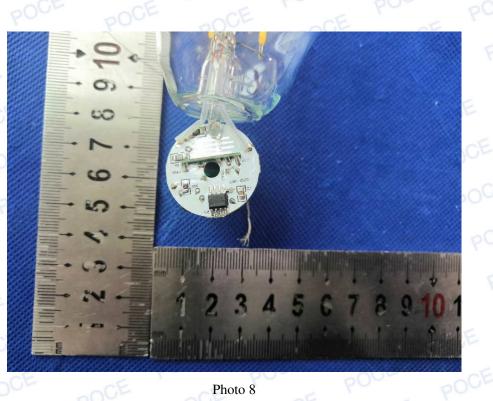


Photo 8

H Building, Hongfa Science and Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, China Web: http://www.poce-cert.com Tel: 86-755-29113252 E-mail:service@poce-cert.com